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Preface

This report describes efforts completed in the Language Stud-
ies project at Syracuse University under RADC contract F30602-77-
C-0235. The work covers the period October 1, 1977 through Sep-
tember 30, 1980.
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Volume 2. Report from the Systems Studies task. Report title
is "Multiple Finite Queueing Model with Fixed Prior-
ity Scheduling".
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is "An Algorithmic Solution for a Queueing Model of
a Computer System with Interactive and Batch Jobs.

Volume 4. Report from the Grammars of Programming task. Re-
port title is "Programming Control Structures in a
High Level Language.

Volume 5. Report from the Proving Program Correctness task.
Report title is "Realignment".

B

o Ter
Accession

-4

R - ) \
R ' | \
iid : ; '
" av .- - -\




ABSTRACT

In this research a multiple finite source queueing model
with a single server and fixed priority service discipline is
investigated. Interarrival times have exponential density func-
tions and service times have arbitrary distribution functions.

A solution procedure, containi~: a set of numerical algorithms,
is developed to obtain server utilization and the mean values
of the waiting times per customer of differ=nt classes and the
number of waiting customers of different classes.

The imbedded Markov chain technique is used as the basic
method of analysis of the model. First, the expressions for
the utilization, p, and the mean values of the system performance
measures for different classes are obtained in terms of pi's, the
proportion of time the server is busy with the customers of the
corresponding classes, using an extension of Little's formula.
Based on regenerative theory, these pi's are related to E(Bi)'s,
(i =1,2,...,K), which are the expected lengths of the busy
period during which the server is busy with class i customers
and E(I), the expected length of the idle period. The E(Bi)'s
are then expressed as functions of the steady state probabilities
of the Markov chain obtained by imbedding the process at depar-
ture epochs.

After the elements of the transition probability matrix of

the Markov Chain, P, are generated, obtaining the steady state




probabilities involves inversion of a large matrix. Numerical
techniques are developed for inversion, first by reordering the
states of P to have a suitable .structure for the matrix to be
invefted, and then modifying an available inversion procedure

to suit this structure. Using the expressions developed for the
inverse, recursive relations are derived for finding the values
of steady state departure probabilities.

The set of algorithms developed are extended to find time
average marginal and joint probabilities of finding a certain
nunber of waiting customers of different classes at the facility
using Level Crossing Analysis. The possibility of using the
algorithms for mixed class models consisting of finite sources
for some classes and infinite sources for the other classes is

also discussed.
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CHAPTER 1

INTRODUCTION AND REVIEW OF THE LITERATURE

1.1 INTRODUCTION

Queueing theory serves as a useful mathematical tool to
analyze the effects of various queueing phenomena to be con-
sidered in the modeling and analysis of many systems. A mathe-
matical study of any system using queueing models needs speci-
fication about the capacity of the source from which customers

are generated, the distributions of the inter-arrival and ser-

vice times of the customers, the number and arrangement of
servers and service stations at the service facility, and the
service discipline based on which the customers are selected
for service. When a mathematical model of a system is construc-
ted, the underlying motivation is usually to evaluate some
measure of performance. In the case of queueing systems,
usually the performance measures which are of interest are
the waiting times, the number of customers in the queue and
at the service facility, and the utilization of the server.
The mean, variance, and the probability distribution of these
variables are studied.

Queueing models in which customers are generated from at

least one finite input source to which they return after re-

ceiving service are known as finite-source queueing models.




Such finite source models were initially used to study indus-
trial processes in which one operator or a group of operators
attend a finite number of machines which may break down from
time to time. Therefore, in queueing theory literature, these
models are known as the machine servicing model [FELL 66] or
the machine interference model [COXS 61). Each machine is
either running, requiring repair service, or waiting as a
standby. When a machine breaks down, it joins the queue of
machines waiting for repair. If the operator is free, a
machine is selected from the queue based on some scheduling
rule. If the operator is busy, the machine must wait in the
queue until it 1s selected for service. After a machine is
serviced, it starts working and after a passage of some time
interval, which may be stochastic, fails again and requires
the service of the operator.

Such finite source models are also models of many time-
sharing computer and multi-access communications systems in
which a finite number of users or computer terminals depend
on the service from a computer system. Each user sends from
the terminal a request for processing to the computer and the
system keeps this request in the queue. When the particular
request is selected for processing according to the scheduling
rule used for the processor, the program associated with it
is executed. After the execution is completed, the response

or the output is fed back to the terminal and then the user

ey




begins to generate a new request for the computer.

If, in such models, more than one type of customer ema-
nates from one or more input soufces, then the question of
allocating priorities arises and is of practical significance.
Two types of models may arise in such cases with priorities
[JAIS 67]. They are (i) the multiple finite source priority
models, in which K types (K > 2) of customers are generated
from K different independent sources, and (ii) the single
finite source priority models in which K types (K > 2) of cus-
tomers are generated from a single finite source. An example
of the multiple finite source priority model is the multiaccess
computer system which is used by different independent classes
or groups of finite number of users. The priority given to
a user when being selected for service can depend on the class
to which the user belongs. Single finite source models are
best illustrated by the situation in which an operator looks
after a set of N number of machines, each of which can fail
because of any of K types of failures, with certain probabili-
ties. Based on the type of failure, some priority rule is
used to select a broken down machine for repair. The priority
rule used in a queueing model can be of different types. One
of the most commonly used priority disciplines assigns dif-
ferent fixed priorities to different groups or types of cus-
tomers based on some external characteristics and always gives

preference to higher priority customers over those with lower 3




priority. This implies that a lower priority customer is taken
for service only if there are no higher priority customers
present. If the service of a lower priority customer, already
being serviced, is interrupted before completion of service on
the arrival of a higher priority customer, then this priority
discipline is called preemptive fixed priority discipline. If
the service of a customer is never interrupted before completion,
then this type of service discipline is known as non-preemptive
fixed priority discipline. In both types, the customers within
the same class are selected for service based on the order of
their arrival.

Finite source queueing models are difficult to analyze, as
compared to infinite source models, because the arrival rate
of the customers at the service facility is not constant, but
is dependent on the number of customers already at the service
facility. Only limited work has been done in finite source
models as compared to infinite source models. The complexity
of the analysis increases as the number of classes increases.
Systems with large source capacities can be analyzed approxi-
mately as infinite source models if the arrival rates of the
customers at the facility are less dependent on the number of
customers already at the facility. But such an approximation may
not be valid in systems in which the source capacities are
sufficiently small and the arrival rates of the customers are

dependent on the number of customers already at the facility.




Multiple finite source priority models are comparatively
easier to analyze than single finite source priority models.
This is because in the case of single finite source priority
models the arrival of any class customer at the facility
affects the arrival rates of all other classes, which is not
the case with multiple finite source priority models. As far

as the priority disciplines are concerned, analysis of preemp-

tive priority models is easier compared with that of non-pre-
i emptive priority models, because the lower priority customers
do not have any effect on the higher priority customers in

preemptive discipline.

1.2 OBJECTIVE OF THIS RESEARCH

! In this research, the multiple finite source priority

v model with a single server and non-preemptive fixed priority
service discipline is considered. The objective is to develop
numerical algorithms to obtain mean waiting times of each class
customer, the mean numbers of each class customers waiting in
the queue and at the service facility, and the utilization of
the server.

The schematic diagram of the model considered in this re-

search is given in Figure 1.1. There are K(> 2) classes of
customers, originating from K independent finite sources. The

capacity of source i, (1 = 1,2,...,K), 1is Ni which is finite.
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Each customer of class i calls for service at the service facil-
ity after spending a random amount of time at the source. This
time is exponentially distributea with mean l/Ai. There is a
single server at the service facility. The service times S1 of
class i customers are identically and independently distributed
random variables, with an arbitrary distribution function F(Si)
and with a mean l/ui, where My is the mean service rate of class
i customers. Non-preemptive fixed priority service discipline
is used by the server with higher priority given to class 1
customers compared with class j customers if 1 < j. Within the
same class, customers are selected for service based on the
order of their arrival. Extending Kendall's notation and the
report of the Queueing Standardization Conference [MOOR 72],
this model can be written as a M/G/1/ /Nl’NZ""’NK/PR with non-
preemptive discipline. '

There are several methods available to analyze queueing

models, among which some are specially suitable for the model

in this research. These are described in the next section.

1.3 METHODS FOR ANALYSIS OF THE MODEL

A queueing process 1s basically a stochastic process and the
method of analyzing any queueing model depends on the type of the
inherent stochastic process of the model. An interesting class
of stochastic processes is the Markov process in which the pre-~

sent state of the system is sufficient to predict the future
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without a knowledge of the past history of the system. In case
of any queueing model with exponential inter-arrival and service
times, the number of customers present at the service facility
at any arbitrary time forms a Markov process. In such models,
taking the state of the system as given by the number of custom—
ers present at the service facility, the equilibrium or the
steady state time average probability distribution of the num-
ber of customers present at the facility can be obtained. This
is done by writing the balance equations, which are known as
global balance equations, for each state based on the principle
that the probabilistic flow rate into a state must equal the prob-
abilistic flow rate out of that state under steady state condi-
tions. These global balance equations form a set of simultane-
ous equations which are then solved to find the steady state
time average probabilities. In some cases, it is possible to
derive recursive relations between the pfobabilities of succes-
sive states which may lead to a general equation for the prob-
abilities. This saves time required for solving the simultane-
ous equations.

When either the service times or the inter-arrival times
of the customers in a model are not exponential, the number of
customers present at the service facility at any arbitrary time
is no longer a Markov process. Th:re are three commonly used
approaches to handle such cases which are suitable for the

model considered in this research [KLEI 75}. These are dis-
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cussed in the following subsections with respect to the expo-

nential arrival time and arbitrary service time distributions.

1.3.1 The Generalized Method of Stages

One approach to solve nonexponential service time distribu-
tions is the method of stages and its generalization. Cox
[COX 55] showed that any probability density function having a
rational Laplace transform can be represented as a combination
of fictitious exponential stages with appropriate mean for each
stage. The advantage in such a representation of an arbitrary
service time distribution is that by including the stage in
which the customer is in service, in the description of the state
along with the number of customers at the facility, the global
balance equations can be written.

The main problem is, however, that the dimension of the
state space rises rather sharply as the system complexity and
the number of stages in the representation of the service time
distribution grow. This correspondingly increases the number
of simultaneous equations to be solved, though it is easy to ob-
tain the matrix corresponding to these equations. Also, this
approach is obviously restricted to service time distributions

with rational Laplace transforms.
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1.3.2 Imbedded Markov Chain Analysis

Any non-Markovian process can be studied by extracting a
set of points at which the Markovian property holds. Such points
are called regeneration points. In queueing models with exponen-
tial inter-arrival times and general service times, the epochs
at which customers depart from the service facility constitute
a set of regeneration points. Therefore the number of customers
present at the service facility at these points forms a Markov
process. This method is called the imbedded Markov chain analy-
sis because 1t involves extracting a discrete-~time Markov chain
imbedded in the continuous-time process and this technique is due
to Kendall [KEND 50].

Using the theory of Markov Chains, the steady state prob-
abilities of finding different numbers of customers at the facil-
ity at departure epochs can be found through the one-step transi-
tion probabilities of this Markov chain. It involves calculation
of the transition probabilities and solving of a set of simultane-
ous equations, the total number of which depends upon the total
number of the states of the Markov chain. The time average prob-
abilities of finding different numbers of customers at the service
facility are then related to the steady state departure probabili-

ties in those models in which they are not equal.

Calculation of transition probabilities which are the elements

of the matrix corresponding to the set of simultaneous equations,
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may be difficult in complex models. But the number of equations

to be solved is much smaller than the case of the global balance
equations in the generalized method of stages because of the

smaller state space of the Markov chain.

1.3.3 Supplementary Variable Technique

A method of making a non-Markovian process Markovian is to
incorporate the missing information by adding a continuous vari-
able as a supplementary variable in the state description. In
case of models with exponential inter-arrival times and arbitrary
service times, the state of the system 1s defined by the pair
consisting of the number of customers at the facility and the
elapsed service time of the customer already under service. This
approach was first suggested by Kendall [KEND 53], but was first
used by Cox [COX 55a]. The remaining service time can also be
used as the supplementary variable, insteady of the elapsed ser-
vice time [HEND 72}. As compared to this method, a discrete vari-
able, namely the stage of the service time distribution of the
customer already under service, is added as a supplementary vari-
able in the method of generalized stages described in 1.3.1.

After the supplementary variables are included in the state
description, balance equations can be written and solved. The

solution of the equations involves transforms, which can become

very difficult for complex models.




1.4 REVIEW OF RELATED WORK

Analysis of cingle class finite source models with exponen-
tial inter-arrival and service times using global balance equa-
tions can be found in books on queueing theory [GROS 74 and
KLEI 75]. The single class finite source model with exponential
service times and arbitrary service time distributions was studied
by Jaiswal [JAIS 68) using the supplementary variable technique.
In this model the proportion of departures that leave a certain
number of customers at the service facility is not equal to the
proportion of time the same number of customers are at the facil-
ity. Courtois and Georges [COUR 71] obtained relations between
these departure average and time average probabilities for a
M/G/1 queueing model with state-dependent arrival and service pro-
cesses and a single class of customers. The single class finite
source model is a special case of the model analyzed by them.

Thiruvengadam [THIR 65] analyzed a M/G/1/ /Nl,NZ/PR model
with non~preemptive priority rule, using the supplementary vari-
able technique and solved the resulting differential difference
equations. Jaiswal and Thiruvengadam [JAIS 67] considered this
method tedious and modified the analysis, basing it upon the
basic server sojoura process, which starts when a lower priority
customer enters service and ends when the server becomes free

to accept the next lower priority customer for service. Using

this approach, they studied a M/G/1/ /Nl’NZ/PR model with pre-
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emptive priority rule. For the non-preemptive service rule, they
suggested modifications in this approach. Extending this work,
Jaiswal [JAIS 68] did extensive work in different types of pri-
ority queueing models. For a M/G/1l/ /NI’NZ/PR model with non~
preemptive priority rule, he derived the expected length of the
busy period duration, in terms of lengthy functions of Laplace
Transforms of service time distributions of the classes, using
the supplementary variable technique. He also obtained Laplace
Transforms of the joint queue length probabilities and the occu-
pation time density. These are difficult to solve even for two
classes. Generalization to more than two classes presents
immense algebraic difficulties. Therefore, Jaiswal did not ex-
tend his approach to more than two classes. We-Min Chow [CHOW 75]
investigated the behavior of the same model using imbedded Markov
chain analysis. He derived a relation between time average prob-
abilities and departure average probabilities in terms of the
integrals of functions of inter-arrival and service time distri-
butions of the customers and the one step transition probabilities.
These are difficult to evaluate even for two classes.

Benson and Cox [BENS 51] studied a single finite source
priority model in which a group of machines failed because of two
types of failures. Assuming exponential running and service times,
they used balance equations and obtained the machine availability
and the operator efficiency. Jaiswal and Thiruvengadam [JAIS 63]

analyzed a similar model with arbitrary service time distribution
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using the supplementary variable technique. They obtained the
steady state probabilities of the number of machines waiting for
repair, the operator efficiency and the machine availability.

None of the above works, which studied either the multiple
or the single finite source priority models with exponential
inter-arrival times and arbitrary service times, could obtain
computationally feasible solutions for finding the system per-
formance measures. Most of these studies described the approach-
es which could be used to analyze such models.

Any finite source queueing model can be represented by an
equivalent closed network with two nodes. Queueing networks

play an important role as performance models of computers and

communications systems. Therefore, considerable research has
been done in recent years on queueing networks. This has re-

sulted in a significant number of useful results. An important

result among these is the discovery of Jackson [JACK 63], Gordon
and Newell [GORD 67], and Basket, et al. [BASK 75] that for cer-

tain classes of networks the solutions of the balance equatioms :

are in the form of a product of simple terms. These are known
as product form solutions. The advantage of such form of
solutions is that the problem of obtaining the probabilities
reduces to that of normalizing the product terms to form a pro-
per probability distribution and of the computation of the

normalizing constant. The process of these solutions was helped




by the algorithms published by Buzen [BUZE 73] and Reiser and
Kobayashi [REIS 75a, REIS 75b, and REIS 77]. In some cases it
may be necessary to find only the mean values of the queue sizes,
walting times, and utilizations and not the probability distribu-~
tions. If in such cases the models have product form solution,
then a solution method called mean value analysis, developed by
Reiser and Lavenberg [REIS 80],can be used. This method is based
i on the relation between the mean waiting time and the mean queue
| size of a model with one less customer. Without the necessity
of computing the normalization constants, this technique solves
the required set of equations numerically. This analysis is

considered to be simpler and numerically less troublesome.

There are many models, including the multiple class closed

network model with arbitrary service times and fixed priority

disciplines, which do not have product form solution. One of .
the ways to analyze such models is the standard method of writing

the global balance equations and solving them, if service times

have rational Laplace transforms. For large models, approximate

numerical solution is a feasible alternative. Sauer and Chandy
3 [ SAUE 80] give an account of the approximate techniques developed
to analyze queueing networks.
The approximate techniques are basically of three types.
The first one is aggregation which replaces subnetworks by com-

posite queues which will produce approximately the same flow of

15




customers through the queue as the subnetwork for all classes

of customers. This is done until the resulting network has a
feasible solution. This was applied to analyze a multiple class
closed queueing network model with fixed priority discipline by
Sauer and Chandy [SAUE 75]. The second type is diffusion ap-
proximation. In the diffusion approximation the variances of
the inter-arrival times and the service times can be incorporated
and the discrete process is represented by a continuous-~time
continuous-state Markov process. Since diffusion processes in
complex models are difficult to solve algebraically, heuristics
are used to simplify the solution, thus obtaining a diffusion
approximation. Diffusion approximations have been primarily
used to open networks with homogeneous customers. The works by
Gaver [GAVE 68] and Kobayashi [KOBA 74] are some examples of
this approximation. But as Kobayashi [KOBA 78] points out,
thefe is no general formula available that helps one to assess
the accuracies of the solutions obtained through the approxima-
tions using either an aggregation or a diffusion.

The third method of approximation involves using mean
value analysis in the case of models which do not have product
form solutions. Notable work in this direction was done by
Reiser and Lavenberg [REIS 80], Bard [BARD 78], and Schweitzer
[SCHW 79]) for the analysis of multiclass closed queueing net-
works. But the results are generally correct only in the

asymptotic case. Thcugh Bard and Schweitzer claim that this
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method of approximation can be used in the case of multiple
class networks with fixed priority discipline and non-exponen-
tial service time distributiohs, no such known analysis is
available.

It can be observed from the preceding review that no feasi-
ble analytical or approximate results are available for the
multiple finite source priority model with non-preemptive fixed
priority discipline and arbitrary service time distributioms.
Simulation is the most widely used technique to study this
model. But simulation is expensive and time consuming, especial-
ly when the run lengths are long to improve the accuracy of the
results. As an alternative, recently there has been a growing
interest in numerical algorithmic methods to solve the models
for which no tractable analytic results are available. One of
the main approaches used in algorithmic methods is to represent
the state probabilities of a Markov process in the form of a
set of linear equations and to find an efficient solution to
these equations by exploiting the special structure of the matrix
corresponding to the equations. One such related work is by
Raju and Bhat [RAJU 77] who developed numerical algorithms to
analyze finite waiting room capacity queueing models, with mul-

tiple classes.




1.5 OVERVIEW OF THIS RESEARCH

Chapter 2 contains the details of the solution procedure
for obtaining the mean values of system performance measures
which lead to a set of algorithms. Based on the logic of its
development, the procedure is divided into parts and described
in separate sections. The mathematical relations required for
computation are derived. Then the algorithms are summarized in
a way suitable for adaption as a computer code in section 2.6.
The results of verification of the algorithms using simulation
are illustrated at the end of the chapter along with comments
on the computational aspects of the algorithms.

In Chapter 3, the algorithms developed in Chapter 2 are
first extended to obtain time average marginal and joint prob-
abilities of the number of customers at the service facility,
using Level Crossing Analysis. Then the possibility of using
the algorithms for mixed class models in which some classes
have infinite capacity and the other classes have finite cap-

acity sources is discussed. Finally, conclusions and sugges-

tions for further research are given at the end of the chapter.




CHAPTER 2

SOLUTION PROCEDURE

2.1 INTRODUCTION

Imbedded Markov chain is used as the basic method of
analysis of the model in this research. Out of the possible
{ methods of approaches discussed in Chapter 1, the supplemen-
tary variable technique is found to be a very difficult method
of analysis for this model, especially when the number of
classes is greater than 2 [JAIS 68]. The method of generalized
stages is restricted to service time distributions with rational
Laplace transforms. Even in cases where it can be used, the
number of states becomes very large compared to that of im-
bedded Markov chain.

In order to achieve the objective of this research, ef-
forts were made to obtain direct formulae for the mean values
of system performance measures which can be related to the
results obtained through imbedded Markov chain analysis. This
resulted in a series of logical and sequential steps which are

described in the following sectiomns.
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19




2,2 BASIC RELATIONS

2.2.1 Relations of Mean Values

A single class queueing system consisting of a finite
source with N customers served by a single server can be re-
presented as in Figure 2.1. Each customer, after spending an
average of 1/} time units in the source, arrives at the service
facility and waits in the queue for wq time units on the average.
The mean service time is 1/y time units and after the service is
completed, the customer returns back to the source without any

time loss. This cycle is repeated for each customer. It is

assumed that the system is in steady state which ensures the i
existence of well defined and finite limiting average values of
1/3, wq and 1/p . After entering the system marked as Box A,
the customer never leaves it until departure at point b,
Thérefore, Little's formula can be applied to the whole system
[STID 78, KOBA 78] which states that the average number of cus-

tomers within the system (i.e., within Box A) equals the average

1 output of the system (at point b) times the average time spent
[ by a customer within the system.

The average number of customers at any time in the system
is equal to the total number of customers in the system, which
ﬁ is equal to N, as the customers return back from the service

facility to the source, without any time loss. The average

1
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output of the system is equal to pu where p 1s the utilization
of the server. This is valid under all conditions. The only
restriction is that the service discipline is work conserving
in that the service times of the individual customers are not

affected by the discipline [KOBA 78]. Therefore,

N = pu(l/x + Wq + 1/w)

which gives

]
r
.
3
!
;

Wq = N/pp = 1/u - 1/Xx . (2.1)
No assumption was made about the distribution of either the
inter-arrival times or the service times in deriving relation
(2.1). The only requirements are that the system should be
operating under steady state and that the service times of the

individual customers are not affected by the service discipline.

it

In the case of a finite population model with capacity N, the

effective arrival rate of the customers at the facility is
p- (N-L)), where L is the mean number of customers present at the
facility and 1/) is the mean inter-arrival time of a customer

{GROS 74]. The mean amount of time a customer spends at the

ey

facility, W, can be related to L using the relation L = (N-L)A W.

Using this, the relation W = wq + 1/u and (2.1), L can be ex-

pressed as, i




L=N-opu/rx . (2.2)

Lq’ the mean number of customers waiting in the queue, is re-~
lated to L by the relation L = Lq + 0.

In the case of a multiple finite source system which has
K(> 2) number of independent sources and a single server, the
flow of customers of each source can be considered separately
in a subsystem and separate boxes like Box A in Figure 2.1 can
be constructed for each subsystem. If the service discipline
is of non-preemptive fixed priority type, which is work-conserv-
ing in the sense described earlier, and if steady state condi-
tions can be assumed to exist, then Little's formula can be ap-

plied to each subsystem as before and the following relations 4

are obtained for 1 = 1,2,...,K:

(1) Mean waiting time of class i customer in the queue:

qu = Ni/oiui - 1/ui - 1/>\i (2.3)

(ii) Mean time spent by a class i customer at the facility:

wi = wqi + 1/u1 (2.4)

(i1i) Mean number of class i customers present at the facility:

Ly =N, - oiuilxi , and (2.5)

e A .

e




(iv) Mean number of class i customers waiting in the queue:
L =1L, -p, (2.6)

where Py refers to the proportion of time the server is busy with
class 1 customers or the time average probability that the server
is busy with class i customers. The utilization of the server is

given by,

0, 2.7)

o=

i=1

Relations (2.3) to (2.7) illustrate that the mean values of

the system performance measures of interest can be obtained if

the pi's (i=1,2,...,K) can be found. In the next subsection,

the method of obtaining the values of p,'s is described using the

1 B 1

theory of regenerative processes.

2.2.2 Regenerative Process

A regenerative process {X(t), t > 0} is a stochastic process
which starts anew probabilistically at an increasing sequence,

0 < R1 < R2 < R3 ..., of random epochs on the time axis [0,=).

Thus, between any consecutive epochs R, and R2+1, the portion

[)
{x(t), RE <t < Rz+1} is an independent and identically distri-

buted replicate of the portion between any other two consecutive

24
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epochs [ROSS 70]. Also, the time interval between two consecu-

whose length is represented by,Tg. These lengths of the regen-

erative cycles are independent and identically distributed

is called the regenerative cycle %,

tive epochs R, and RQ+

2 1

random variables.

Suppose that Y represents a reward earned during the re-

L
generative cycle £ and that the pairs (Tl’ YR)’ £ =1,2,..., are
independent and identically distributed. If Y(t) denotes the
total reward earned by time t, then the limiting value of the

average return is given by the following theorem.

Theorem 2.1: If E(!Yll) and E(Tz) are finite, then

(1) with probability 1,

Y(t) E(Y)
T e d ———E(T) as t > > )
(2.8)
(i1) E(Y(t)) |, EQY) . .
t E(T) as t

The proof of this theorem can be found in [ROSS 70]. According
to this theorem, the expected long-run return is just the expected
return earned during a cycle divided by the expected length of a
cycle.

In the model being studied in this research, X(t) can re-
present the total number of customers presen: at the facility

at time t and each busy cycle, consisting of a busy period and

25




an idle period, can be considered as a regenerative cycle [CHOW
75]. Let YE represent the amount of time the server is busy
with class i customers (i = 1,2,...,K) during the busy cycle %
and Y(t) denote the total amount of time the server is busy

with class 1 customers during a time period t. Then as per

Y(t)
t

Theorem 2.1, oy (which is equal to as t » ») can be ob-
tained by taking the ratio of the expected length of time that
the server is busy with class i customers during a busy cycle
to the mean length of one busy cycle. Let E(B) be the expect-
ed length of one busy period, E(Bi)’ (1i=1,2,...,K), be the
expected length of the busy period during which the server is

busy with class i customers, and E(I) be the expected length

of one idle period. Then, as per Theorem 2.1, for i = 1,2,...,K,

E(B,)
P T E®) + BE(D

where

=

E(B) = Z‘E(Bi).
i=1 -
The idle period starts at the instant when all the cus-
tomers are at their respective sources. Since the inter—arrival
time of each customer of class 1, (i = 1,2,.;;,K), follows an

exponential distribution with mean 1/)\i as per thé model des-

26
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cription, the mean time interval after which the first cus-
tomer of class 1 arrives at the service facility, after the

start of an idle period is 1/N A customer of any class

it
can terminate an idle period and therefore the mean length of
the idle period is given by

K

E(I) = [ Z Nixi]’
i=1

1

Since in relation (2.9) only the values of E(Bi)'s are
unknown, the next step in the solution development is to find
the values of E(Bi)’ (i=1,2,...,K). Imbedded Markov chain

analysis is used for this purpose.

2.2.3 Imbedded Markov Chain Analysis

As discussed in Chapter 1, in the model being studied in
this research, the epochs at which customers depart from the
service facility constitute a set of regenerative points. As
this model has K distinct classes of customers, the numbers of
customers of these K different classes present at the service
facility at departure epochs form a Markov process. The states
of the Markov chain of this process are expressed by vectors
which consist of K elements corresponding to the numbers of
customers of K classes present at the facility at the departure

epochs. Let gﬂ and §n+1 denote the states of the process at

27
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the nth and (n+l)st departure epochs, respectively, (n = 1,2,...).

Let the elements of the row vectors j = (jl’jz""’ji""‘jx) and
u = (ul,uz,...,ui,...,uK) represent the numbers of customers of
the corresponding classes present at the facility at the nth and
the (n+1)s£ departure epochs, respectively. Then the elements

of the transition probability matrix corresponding to this Markov

41 - ulx =30,

chain are given by the conditional probabilities, P[_)gn
for different possible values of the elements of u and j. The
total number of states of the Markov chain is given by the number
of all possible combinations of the numbers of customers of K
classes that can be left behind at the facility by a departing
customer. This is equal to {.§1(Ni+1)} - 1, which is denoted as
(mt+l) for the sake of simplici;y.

As this type of imbedded i.arkov chain is finite, aperiodic,
and irreducible, all its states are ergodic [KLEI 75}. This en-
sures the existence of steady state probabilities. Let the row
vector containing the steady state probabilities of this Markov
chain be represented by A. It has (mt+l) elements corresponding
to the (mt+l) states of the Markov chain., Two ways are used to
represent the elements of this vector. One way is to represent

a typical element of A as A, which refers to the jth element

j’
of A. In the second way of representation, A(v) refers to the
steady state probability that just after the departure of a

customer, the state of the process is v = (VI’VZ""’Vi""'vK)'




RS A

The second way of representation is used whenever the informa-
tion regarding the number of customers left behind by a depart-

ing customer is of importance.'

2.2.3.1 The Relation Between E(Bi) and A

Let E(R) represent the expected number of customers served
by the server during a busy cycle and Py represent the propor-
tion of class i customers served during a busy cycle, i.e., the
steady state probability that a departing customer is of class
i. Then E(Ri)’ the mean number of class i customers served dur-

ing a busy cycle, is given by, for i = 1,2,...,K,

E(R;) = E(R) p; (2.11)
and therefore
E(B;) = E(R,)/uy
= E(R) pi/ui . (2.12)

As per the second way of representing the elements of A,
A(Q0) stands for the steady state probability that a departing

customer leaves behind an empty facility, where 0 stands for

the vector with all zero elements, i.e., 0 = (0,0,...,0). This




implies that A(0) is the steady state time average proportion
of served customers who terminate busy periods, and that on the
average, one out of every [A(g)]-l customers terminate a busy .

period. Therefore,
E(R) = {A(0)] ! (2.13)

The quantity p, can be divided into two parts: Py and Py
The first part, Pyyo is the steady state probability that immedi-
ately after the termination of an idle period, the first depart-
ing customer is of class i. As the steady state probability
that a departing customer starts an idle period is A(Q) and the
probability that an idle period is terminated by a clsss i cus-
K 1

tomer is Niki[.z Nixi]

, LJAIS 68}, p is given by
i=1 il

Py = A NI r Niki]_l (2.14)
i=1
The second part, Pigs is the steady state probability that
excluding the first departing customer during a busy period, any
other departing customer is of class i. 1If the elements of the
row vector v = (vl’VZ""’Vi""’VK) represents the number of cus-
tomers of the corresponding classes left behind by a departing

customer, then a class 1 customer will be the next customer to

be served and to depart as long as vy $# 0 and v, = 0 for all

3
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j < i. This is because of the fixed priority service discipline.

Therefore,

Ni K Nl

I {z AWM (2.15)
vi=l L=i+] v2=0

Pi2

where Vj =0 for all j < i, in v. As Py = Py + P and from

(2.11) to (2.14), for i = 1,2,...,K,

! K -1
E(Bi) = l/ui[NiXi(.Z Niki) +
v i=1
| Ny ok Ny
A(0) T ( T { £ AMMD]

‘! v.=1l =i+l v =
i 3

(2.16)

where vj =0 for all j < i, in v.
In equation (2.16), the only unknown quantities are the
elements of the steady state probability vector, A. Therefore, -

the next step in the solution procedure is to find the values of

the elements of A.

2.2.3.2 Obtaining The Elements of A

-

Let P represent the transition probability matrix of the
Markov chain., Then the vector A can be uniquely determined by

L) solving the system of linear homogeneous equations

A(I-P) = 0 (2.17)

TR e | TN T YT T TN W A c. - e SO 2
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subject to the normalizing condition

m+l
IA, =1. (2.18)

=19

In (2.17), I represents the identity matrix of size (mt+l)x(m+l).

Of the (m+l) equations in (2.17), only m are independent. So

the matrix (I-P) does not have an inverse. If one of the (mt+l)

equations in (2.17) is eliminated then the remaining m equations

along with (2.18) can be used to obtain a unique solution for A.

Let the first equation in (2.17) be removed, which is equivalent

to eliminating the first column of (I-P). Expressing Al’AZ""’

Am in terms of Am+1’ the system of equatiomns in (2.17) can be

written as

A Z - (2.19) )

é}(I-P)l -
In (2.19) the.row vector Al contains the first m elements
of A, the matrix (I—P)1 is of size mxm and consists of all elements
of (I-P) except those in the last row and the first column of (I-P)
and the row vector Z contains the negative of the last m elements
of the last row of (I-P). Now the m equations in (2.19) are in-
dependent and therefore the matrix (I—P)1 has an inverse. Multi-

plying both sides of (2.19) by the inverse of (I—P)l, the elements

of 51 are given by,




1

1,-1
A" = Am+1{gj(I-P) 17},

By using equations (2.20) and (2.18), the values of all the

steady state probabilities can be obtained.

At this stage, the problem reduces to the following:

(i) Generation of the elements of the tranmsition prob-
ability matrix P and from these, obtaining the
elements of the row vector Z and of the matrix
a-nl;

(ii) Inversion of (I-P)l;
(iii) Obtaining the values of Aj, j=12,...,ml,
using (2.20) and (2.18).

These three steps are described in the following sectionms.

2.3 GENERATION OF THE ELEMENTS OF P

As stated in section 2.2, the elements of P are given by
the conditional transition probabilities, P[Zn+1 = gjgn = i].
The calculation of these probabilities is discussed under two
sets of conditions, depending upon whether the nth departing
customer leaves behind a non-empty or an empty facility.

Under the first set of conditions, the elements of §, which
gives the state of the process at the nth departure epoch, are
such that there is at least one non-zero element, jl’ (L =1,2,

..,K), with j1 =0 for all i < &, if 2 ¥ 1. This implies that

(2.20)
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the nth departing customer leaves behind at least one customer
of class % at the facility without any customers of higher pri-
ority classes waiting for service. Then, because of the fixed
priority discipline, the next, i.e., the (n+1)8t, customer to be
serviced belongs to class . Therefore, in order to have the
state of the process at the (n+l)St departure epoch to be

u= (ul.uz,...,uK), the number of arrivals during the service
period of the (n+1)sc customer has to be (ul - j1+1) for class 2%
and (ui - ji) for classes 1 = 1,2,...,K, but not 2. Therefore,

the conditional probability is given by

P[X

X = Ejgn = j] = Probability[number of arrivals during

the (n+l)st service time
= (uz"j 21+1) ’ (ul—jl) 9oy

(g 1731 (gyy=3pg)»
...,(uK—jK)l)_{n = j and the

" (n+l)st service time is that .
of a class £ customer, i.e.,

Sl]-

As per the description of the model, the sources are finite
and independent of each other and the times spent by the customers
of each class at the corresponding sources are exponentially dis-
tributed random variables. Therefore, the number of arrivals of i
each class customers at the facility within a given time inter- ;
val is a binomially distributed random variable, independent of i
i

the arrivals of other class customers. Let p(mi;ni,t) denote the

34




probability that the number of arrivals of class i customers,

(i =1,2,...,K), at the facility within a time period t 1is o,

when there are n, customers of class i at the facility at the

i
beginning of the time period. Then,

N;-n -\ tm -h e N-n
p(mi;ni.t) =\ . (1-e ) “(e )
i

1™

where w ,n, = 0,1,2,...,Ni, mi+ni §_Ni, and l/>\i is the mean
time spent by a class i customer at the source.
Now, for j2 # 0 and ji =0 if 1 < 2 and 2 # 1, the condi-

tional probability can be written as

K

(2.21)

PIX p=ulX =3) = STU T pCu;-353;,8 ) pCu g3 4153 408 AR (s ), (2.22)

o i=1
#2

where F(sl) is the distribution function of the service time of

class L customer. After substituting the values of p(ui_ji;ji’sﬁ)

and p(uz—j2+1;jz,s2) from (2.21), equation (2.22) becomes, for

j,#0and 3 =01f 1 <
PIX 1=l =1) = 8, f 8, dF(s)

where

(2.23)

e




and
K -A,8, u,~j, =-i,s, N -u -A,8, u~j,+1 =i s, N -u -1

el ={ I (l-e i 2) i 1(e i 2) i i}(l-e L 2) L 7L (e L 2) IS
i=1 (2.25)
$L

th

Under the second set of conditions, the n~ departure leaves
behind an empty facility, i.e., in vector j, ji =0 fori=1,2,
«.+,K, thereby starting an idle period. Then the (n+1)St service
time depends on the class of customer who terminates this idle
period. This situation is illustrated by Figure 2.2 in which

the l:x!‘.'h customer leaves at A starting an idle period. The cus-

tomer who arrives at B terminates the idle period and after being

FIRST ARRIVAL

' v
X = 0,0,...,0) MORE ARRIVALS X - o )
_1#! Zn+l 1°Y22 000
A c

IDLE PERIOD —.""'(n'l-l)St SERVICE TIME ———em

v

DEPARTURE (n+1)%® DEPARTURE
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n

BEHAVIOR OF THE PROCESS WHEN ji =0, FOR1=1,2,...,K.
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served becomes the (n+1)St departure at C. From B to C the pro-
cess behaves as if at point B there is a departure leaving be-
hind only that customer who terminated the idle period. Because
any class customer can terminate the idle period at B, the re-

quired conditional probability is given by

I {Prob[idle period is terminated by a class (2.26)
i=1

i customer] Prob[§“+lég|§n%1]}

where 0 refers to the row vector containing all zero elements and

the elements of the vector j are given by jl =1 1if 2 = 1 and
jl =0 if 2 # i. As stated in section 2.2.3.1, the probability

that an idle period is terminated by a class i customer is equal
K
z N.llill—l. So equation (2.26) becomes

to N, A, [ i
il=1

ii

K K

-1
=0) = I {NA, ( I N A.) "P[X  .=ulX =§]} (2.27)
4=1 I i i1=1 11741 ~n+l ='~n

PIX,yp7ulX

[ where P[X =u|X =] with j, = 1 if 2 =1 and j, = 0 1f ¢ ¥ i,
: IS B 2 .
can be obtained from (2.23).

The evaluation of the integral in (2.23) depends upon F(sl)
which is the distribution function of the (n+1)St service time.

In Appendix B the integral is evaluated when the density function

g ke et




of S2 is exponential, hypo-exponential, or hyper-exponential for
the purpose of illustration. These are the demsity functions
frequently used to represent service demands [KOBA 78] because
these density functions have rational Laplace transforms. In
computer systems, the coefficients of variation (the ratio of the
standard deviation to the mean) of the service time distributions
are found to be greater than 1 [ANDE 72] and thus hyper—exponen-
tial density function is appropriate in such cases.

Once the elements of the transition probability matrix are
generated, the elements of (I--P)1 and the row vector Z can be

easily obtained. The next step then is to find the inverse of

(I-P)1 which is described in the next section.

2.4 INVERSION OF THE MATRIX (I—P)l 4

2.4.1 Introduction

The inversion of a matrix becomes tedious and time consum-

ing as its size increases. The size of (I—P)l is mxm where m is

K

equal to { I (N1+1)}-2. The value of m becomes very large even
i=1

for small values of N,'s., One of the goals in the development

i

of the solution procedure is, therefore, to develop an efficient
numerical algorithm for inverting (I-P)l.
A good numerical technique used for inverting any matrix

should take into account and exploit the structure of that matrix.
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In some cases, it may be possible to alter the structure of a
matrix so as to suit it to an efficient inversion technique. In
the case of the matrix (I—P)l, in addition to altering the struc-
ture of the matrix, it is necessary also to modify an available
inversion technique to suit the altered structure.

There are some interesting matrix structures which are en-
countered in the case of finite Markov chains of queueing models.
Among those, the two types most related to this research are al-

most left triangular and left triangular structures [RAJU 77].

Definition 1l: A nxn square matrix C is almost left triangular

if its elements are such that, for i = 1,2,...,n,

c, = 0 for all j > i+l .
i,]
Definition 2: A nxn square matrix C is left triangular if its

elements are such that, for i = 1,2,...,n,

c =0 for all j > i.

i,3

At this stage it is necessary to introduce the terminologies, the

superdiagonal and the main diagonal of a square matrix.

Definition 3: the super diagonal of a nxn square matrix C con-

sists of the elements ¢, ,, such that j = i+l for 1 = 1,2,.,.,n.
1,5
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Definition 4: The main diagonal of a nxn square matrix C con-

sists of the elements ¢ , such that j =i for 1 = 1,2,...,n.

i,]
If the structure of the matrix (I-P) in equation (2.16) is
almost left triangular, then the matrix (I—P)1 has a left tri-
angular structure. The advantage of having a matrix with left
triangular structure and all non-zero elements along the main
diagonal is that computationally efficient methods are available
for the inversion of such a matrix [SCHR 73]}. But, in the case
of the model in this research, it is not possible to obtain a
left triangular structure with all non-zero main diagonal ele-
ments for the matrix (I-P)l. It is, however, possible to place
most of its elements into a left triangular form while having
only a few elements above the main diagonal by a suitable
arrangement of 1its column and row states. This arrangement is
also advantageous because the inverse of the left triangular
part .of (I-P)1 can be obtained first using the already avail-
able technique and then this inverse can be modified taking the
elements above the main diagonal into consideration. This di-
vides the procedure of inverting (I-P)1 into three basic parts.
They are, (i) arrangement of the row and column states of (I—P)1
to place most of its elements into a left triangular form leaving
the remaining elements above the main diagonal; (ii) inversion
of the lower triangular part using an available numerical tech-
nique; (ii1i) modification of the inverse obtained in (ii), taking

the elements above the main diagonal into considerationm.
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These are explained in detail in the following subsections.

2.4.2 Arrangement of the States

The arrangement of the states of (I-P)1 is done prggressive-~
ly, starting with the state’s of the transition probability matrix
P, then the states of the matrix (I-P), and finally ending up
with matrix (I-P)l. As matrix (I—P)1 is obtained by deleting
the first column and the last row of (I-P), the main purpose of
the arrangement of the states is to group most of the elements of
(I-P) into an almost left triangular form with non-zero elements
along the super diagonal. This is helped by the following facts:
(i) the imbedded Markov chain of the model has unit jumps at
regeneration points which means that, at departure epochs, the
number of customers at the facility decreases by at most one;
(ii) because of the fixed priority rule, the number of customers
of class £ (R = 2,3,...,K) can decrease by one at departure epochs
only if there are no customers of all higher priority classes

present at the facility at the previous departure epoch.

2.4.2.1 Arrangement of the States of P

A typical row state in the matrix P represents the number
of customers left behind at the facility by the nt:h departing
customer (n = 1,2,...). It is denoted as gn = j, where j is the

row vector containing the elements jl,jz,...,jK which represent
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: i
the numbers of customers of corresponding classes. Let gn

stand for the ith row state, 1 = 1,2,...,(ml). A typical

column state in P represents the number of customers left be-
. st .
hind by the next, i.e., (n+l) departing customer. It is
denoted as X+l *© u where u is the row vector containing the
elements Upslgyeee,ly which represent the numbers of customers
. v th
of corresponding classes. Let §n+l stand for the v column

state. In P the arrangement of row states is identical to

that of the column states, i.e., for 1 = 1,2,...,mt+l, igﬂ =

F v
§n+l’ when v = 1.

The method chosen to arrange the states in P forms a con-

venient basis from which the final arrangement of the states of

(I-P) and (I—P)l emerge, yielding the desired matrix structures.
This method of arrangement is explained with respect to the row
states which are arranged as per the following steps:

'(i) Set i = 1 and let the first row state from the

top be equal to

1— -
: Xo = NNy, Ny M=)

-

' Set j, = N, for £ = 1,2,...,K-1 ang g = Nl
(i) Set i = i+l and #1 = K. If i < { T (Nk+1)}-l,

k=1
go to step (iii). Otherwise, go to step (vi).

T




(111) 1f I # 0, set 351 = 35171 and go to step ).
Otherwise, go to step (iv).
(1v) Set jzl = Nll and 21 = 21-1. Go to step (iii).
(v) Set the ith row state

i
)_(n = (jlljzs""jx)'

Go to step (ii).

(vi) Stop.
K
Because the maximum value of i is set as m¥l = { I (Nk+1)}-1,
k=1

the last row state generated is
gﬁ*l = (0,0,...,0).

To illustrate the above steps, an example is considered in
which there are three classes of customers with Nl =2, N2 =1,
and N3 = 2, As per step (i) the first state is g; = (2,1,1).
When 1 = 2, steps (iii) and (v) result in gi = (2,1,0). When
1 =3, as j3 = 0, step (iv) changes j3 to N3 = 2 and step (iii)
changes jz to 1-1 = 0, resulting in 5: = (2,0,2). The next two
states are g: = (2,0,1) and 52 = (2,0,0). When i = 6, because
j3 and j2 are zeroes, steps (iii) and (iv) change j3 to N3 -2,

J, to Ny =1, and §, to 2-1 = 1. Therefore g: = (1,1,2). Pro-
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ceeding in this way, when i = { I (Nk+1)}—l = 17, the last row
1

k=1
state obtained is §n7 = (0,0,0). The column states are ordered

in the same way as the row states and the resulting P matrix is
given in Figure 2.3.
To help in the modification of the arrangement of the states 5
in (I-P) matrix, the row states in P are now grouped into K ordered
row sets based on their elements. The row states containing the
maximum number of customers of the first (K-1) classes are grouped i
together to form row set 1. These are the first NK row states
from the top. The row states containing the maximum number of
customers of first (K-2) classes only are then grouped together
as row set 2, These are the next NK_l(NK+1) row states. In
general, the row set k1, (kl = 1,2,...,K), contains those row
states with the maximum number of customers of the first (K-kl)
classes only and the total number of row states in this set is
given by

K

r(kl) = N { T (N +D) . (2.28)
R-KI+1' o 10in &

The last row set K does not contain the maximum number of cus-
tomers of any class. The column states of P are also grouped in
the same way as the row states, starting from the left. This

arrangement of the states does not place most of the elements

of P in an almost left triangular structure.
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In the example considered, the rows are divided into 3
ordered sets. The row set 1 consists of those rows which con-
tain the maximum number of customers of classes 1 and 2; and
there are r(1) = 2 of such rows. The next rows containing the
maximum number of customers of class 1 only are grouped as row
set 2 and the number of rows in this set is given by r(2) =
1{(2+1)} = 3. The third row set consists of r(3) = 2{(1+1)(2+1)}
= 12 rows which do not contain the maximum number of any class
customers. Column states are also grouped in the same way and
this arrangement is 1llustrated in Figure 2.3.

The row states and the column states of their respective
first (K-1) sets contain the maximum number of class 1 cus-
tomers. The main diagonal elements in P along these rows and
columns are all zeros as the corresponding row and column states
cannot communicate with each other. Thg super diagonal of P
contains zero elements corresponding to the noncommunicating

row and column states.

2.4.2.2 Arrangement of the States of (I-P)

Matrix (I-P) is obtained by subtracting P frcm the identity
matrix I of size (mtl)x(m+l). All the non-zero elements of P
except the main diagonal elements become negative in (I-P). The
zero elements along the main diagonal of P become 1 and all other

zero elements remain as zeros in (I-P). This implies that the
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main diagonal elements of the first (K-1) row sets of (I-P)
are 1 and the super diagonal of (I-P) contains some zero ele-
ments. Also a major part of the elements of (I-P) do not form

an almost left triangular structure.

To group most of the elements of (I-P) into a left triangu-
lar structure and to have all non-zero elements along the super
diagonal, the column states of (I-P) are reordered keeping the
ordering of row states unchanged; The arrangement of the column
states can be different from that of the row states in (I-P), be-
cause the order of column states represents only the order in
which the linear equations in (2.16) are arranged. The reorder-

ing of the column states is done by placing the columns of the

last column set, K, of P in the first positions from the left of
(I-P), the columns of the column set (K-1) in the next positions,
and so on and placing finally the columns of the set 1 of P in /
the last positions of (I-P). The order of columns within a set -
is not altered. This procedure is formally stated in the follow-
ing steps:
(1) Renumber the column sets in P in such a way that
set k1, (kl = 1,2,...,K) becomes set k2 where
k2 = K-kl+1.
(11) Rearrange the sets in the ascending order of k2

starting from the left in (I-P).




Applying these steps to the example, column set 3 of P
which consists of the 12 column states from (1,1,2) to (0,0,0)
now becomes column set 1 in (I-P); column set 2 of P which con-
sists of 3 column states from (2,0,2) to (2,0,0) now becomes
the column set 2 in (I-P) and finally the column set 1 becomes
the last column set 3 in (I-P). It is illustrated in Figure 2.4.

This reordering of the column states places all the elements

of (I-P), except the unity elements along the rows of the first

(K-1) row sets, in an almost left triangular structure. Because

of the way in which the column states are now ordered, these
unity elements are located above the super diagonal in column
sets 2 through K and arranged along (K-1) lines parallel to the
super diagonal. If these lines are numbered from left to right, |
then the unity elements along line t lie in column set (t+l) and

row set (K-t). There are r(K-t) unity elements along line t,

where £(K-t) can be obtained from (2.28). The total number of

these unity elements above the super diagonal is equal to the

total number of rows in row sets 1 through (K-1) and is given by

U= I r(kl) . (2.29)

Substituting the value of r(kl) from (2.28), and simplifying,

equation (2.29) becomes

K-1 K
U= N, .. { T (NAD}] . (2.30)
kl=1 R v e *
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It can also be noted that the number of columns in column set
k2, (k2 = 1,2,...,K) in (I-r), is equal to the number of rows
in row set (K-k2+l) which is given by r(K-k2+l1l) in equation

(2.28). Therefore, the unity element in the jth column of column

set k2, (k2 = 2,3,...,K), above the super diagonal of (I-P) is |
located in the jth row of row set (K-k2+1). The super diagonal

of (I-P) now contains all non-zero elements. !

2.4.2.3 Arrangement of the States of (I—P)1

Tl.e matrix (I-P)1 is obtained from (I-P) by deleting the
first column and the last row of (I-P). The first column of ;

(I-P) is

It

1 = -
§n+1 = (Nl 1’N2’N3’°"’NK)

and the last row is

o+l
511 = (0,0,...,0)

These are deleted and the resulting (I-P)1 matrix has most of
its elements in a left triangular structure with non-zero ele-

ments along the main diagonal and some unity elements above the

R

main diagonal.




Because the last row and the first column are removed frcm the
row set K and the column set 1 respectively of (I-P) to get
(I-P)l, (2.28) is revised to éive the number of rows in row set

kl of (I-P)1 as follows:

K
4
_ { T (N+D)},
Ne-k1+1 )
r'(kl) = J if K1 = 1,2,...,K-1 (2.31)
X
{ Nl{lgz(ulﬂ)}-l 1f k1 = K. !

The number of columns in column set k2 of (I-P)1 is equal to

the number of rows in row set (K-k2+1) of (I—P)l, i.e., r'(K-k2+1).
Now, with this arrangement of row and column states in (I-P)1

and (I-P), the states corresponding to the elements of the steady

state departure probability vector A in equation (2.19) are in

the same order as that of the row states of (I--P)1 and (I-P). That

is, element Aj’ j=1,2,...,m, corresponds to the row state §i

of (I-P)l and (I-P) and Am+ corresponds to §:+1 = (0,0,...,0)

1
of (I-P).

2.4.3 1Inversion of a Left Triangular Matrix

The left triangular part of (I-P)1 matrix can be inverted

using the explicit recursive expressions developed by Schwartz




et al. [SCHR 73] for the elements of the inverse of a left tri-
angular matrix. Let C be a left triangular matrix of size mxm

(1,j = 1,2,...,m), such that ¢

with elements ¢ j # 0 for

i,3° 1

all j. 1If matrix G is the inverse of C, then the elements of G

are given by, for i,j = 1,2,...,m [SCHR 73],

l/cj ,j N if 1 = j
i
8,3 7 l/cj,j[- n=§+1c“,jgi,n] il stz

o, Otherwise ,

It can be seen that G is also a left triangular matrix. An
examination of (2.32) makes it clear that gi’j's can be calcu-
lated recursively starting with column m of C and proceeding
left towards column 1. Within each column j, gi’j's are calcu-
lated starting with i = j and proceeding down towards i = m.

It is necessary at this stage to obtain a relation with
respect to gi’j's and certain elements of C, which is very use-
ful in the calculation of steady state departure average prob-
abilities, to be considered later. Let the last row of C be
represented by Cn and the jth column (j = 1,2,...,m) of G be

represented by & Then the product of the vectors = and gj

is equal to zero for j = 1,2,,..,m-1, as C « G = 1, That is

(2.32)
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e g

n=1 m,n>n, j =0, for i=1.2,...,m1.

Rearranging the terms and simplifying,

2.4.4 Modification of the Inverse

2.4.4.1 Preliminaries

In this section the inverse of the lower triangular part
of (I-P)1 obtained through the relations developed in section
2.4.3 is modified to take into account the unity elements which
lie above the main diagonal. This modification procedure is
based on the Product Form method of obtaining an inverse [HADL 61].
vIn this method, in general, if a matrix C1 is formed by replacing
the sth column e with ¢ in a matrix C of size mxm, whose inverse
C-1 is known, then Czl can be obtained by performing the follow-
ing steps:

(i) Compute the column vector, y = C-¥g.

(i1) Form the column vector,

x = (:Zl :Zg “Yg-1 Y -ys+1 -yn)
a » ’ LI Y » [ ’ LI Y
Ys g Vs Yg Yg Vs

where Ve 4 0. (If Ve = 0, then C1 has no inverse.)
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(1ii) Replace the sth column of the identity matrix I
of size mxm with the vector x to obtain a matrix
E.

(iv) Obtain the inverse of C1 as

This method is chosen because of its simplicity and the
potential for obtaining recursive relations. The above steps
will be referred to as Fundamental Steps (i), (ii), (iii), and
(iv) in subsequent discussions.

After the columns and rows of the matrix (I-P)1 are grouped
into sets as per the arrangement given in section 2.4.2, the
unity elements above the main diagonal of (I-P)l are located
in the columns in the column sets 2 through K with one unity
glement in each column. The modification of the inverse is done
by considering each column containing a unity element above the
main diagonal at a time, starting with the first column of
column set 2 and ending up with the last column of column set K.
As the unity elements within each column set are located along
a distinct and different line, the modification procedure is
divided into (K-1) phases, one phase for each column set. Phase
p, (p =1,2,...,K-1), modifies the previously obtained inverse

by taking into consideration the unity elements above the main

diagonal in the columns of column set (p+l). Within each phase

l/‘
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there are a certain number of iterations, each iteration modi-

fying the inverse, taking into consideration one column in the

corresponding column set. The number of iterations in phase p

is given by r'(K-p) in equation (2.31) because the number of

columns in the corresponding column set (p+l) is equal to the

number of rows in the row set (K-p) in (I—P)l‘

Before describing the modification procedure, it is neces-

sary now to briefly describe the symbols used in this section.

(a)

(b)

2r(i,j) specifies the row number in (I-P)l of
the jth row of row set i, (1 = 1,2,...,K). 3
takes on values from 1 to r'(1). 2&r(i,3 is
given by, for i = 1,2,...,K,

i-1

r(i,j) = Ir'(dl) + 3§

il=1
where r'(il) is given in (2.31).
fc(k,n) specifies the column number in (I-P)l
of the nth column of column set k, (k = 1,2,...,K).
n takes on values from 1 to r'(K-k+l). =2c(k,n) is
given by, for k = 1,2,...,K,

k-1

2 c(k,n) = I r'(R-kl+l) + n .,
kl=1

2c(k,F) represents the column number in (I-P)l

(2.34)

(2.35)




1

of the last column of column set k. In other words,
2e(k,F) = 2e(k, r'(K-k+1)) with F = r'(K-k+l1).

To make the expressions simpler, fc(k,n) is
written as &n in cases where it is known clearly
that the column set under consideration is k.
Similarly 2F stands for 2c(k,F).

(¢) The row number in (I-—P)l of the unity element above
the main diagonal in column f%c(k,n) is denoted as
R(2c(k,n)) which is equal to 2r(K-k+l,n) as per sec-
tion 2.4.2.2 and the symbol introduced in part (a).
Whenever fc(k,n) is writtem as ¢n, R(Ze(k,n)) is
replaced by R(&n).

(d) The matrix containing only those elements which
form the left triangular structure of (I-P)1 is
represented by C and its inverse by G.

(e) The matrix which contains all elements of C and all

the unity elements above the main diagonal, from

left up to and including the one being considered

PRI

in the ith iteration of phase p, is denoted as Cp:i
and its inverse as Gp:i. Therefore, (I-P)1 is C(K_l):F
as there are a total of (K-1) phases and as F here
stands for the number of columns in column set K

which are taken into consideration in phase (K-1).

At this stage it 1s necessary to prove the existence of

inverses for the matrices cP'l for 1 <p<K-land 1l <1i<r'(K-p). ;




The following points [HADL 61] are used in this connection with
respect to column vectors.

(1) A set of m column vectors 84y i=1,2,...,m, from

the m dimensional euclidean space, Em, is said to

be linearly independent if the only set of a for
m

which 1iluiéi = 0 holds is Gy =@y = ...

(i1) All the columns of a nonsingular matrix form a

=0 = (.
m

linearly independent set.

(iii) A set of m linearly independent column vectors a
i=1,2,...,m, which spans E® forms a basis for Em.
(iv) Any column vector b in E" can be expressed as a

linear combination of the column vectors a,, i = 1,2,
m

«eeym. That 15, b= I B.a. .
1=1 i~

(v) Given a column vector b # 0 in BT, Then, if in the

expression of b as a linear combination of the basis
m
a i.e., b = iiletgi, any vector ay for

which B, ¥ 0 is removed from the set 81985500098,

vectors

and b is added to the set, the new collection of m
vectors is also a basis for E" and therefore linearly

independent.

Any left triangular matrix with all non-zero elements along i
the main diagonal has an inverse [SCHR 73]. With the arrangement
of the column and row states as per section 2.4.2, the matrix C i
containing all the elements of (I—P)l which form the left tri-

angular structure, has non-zero main diagonal elements and
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therefore has an inverse. So its m columns are linearly inde-

pendent and form a basis for E" as per (ii) and (1i1i). 1In

{teration 1 of phase 1, the inverse is obtained for Clzl, which

is the same as C, but with a unity element above the main di-

" A A -

agonal in column %2¢(2,1), which is column 1 in column set 2.

Let-ﬂlc(Z,l) represent the column 2(2,1) of C. Because C is %%

a left triangular matrix, elements from rows 2c¢(2,1) to m are

the only non-zero elements of Eﬂc(z,l)'
1:1

column 2c¢(2,1) of C . Now b has all elements of ﬁ&c(Z,l) .

with an additional unity element in row R(2c(2,1)). As per

Let b represent the

(iv), b can be expressed as a linear combination of the m
columns of C and let the corresponding coefficients be denoted
as Bi, i=1,2,...,m. Because the elements in rows %2c(2,1l) to

mof b and 2 are equal, and because column a

2¢(2,1) 2c(2,1)

not be represented as a linear combination of the other (m-1)

can- ¥

colunns of C as per (i), B cannot be equal to 0. As

2c(2,1)

per (v), if a is replaced by b in the original set of

2c(2,1)
m columns of C, then the new set is linearly independent.

Therefore the matrix Cl:1

, which has the new set of m columns,
has an inverse.

In each iteration of each phase, a unity element is added
to C in different rows. Therefore, following the same arguments
given before, the existence of inverses GP:i for all p and 1

can be proved by induction. This ensures that the values of

Vg # 0 in Fundamental Step (ii).

58




Instead of going through each iteration in each phase to

obtain the final inverse G

(RK-1):F . (1-P)}, the following ap-

proach 1is used:

(a)

(b)

(c)

(d)

(e)

(£f)

In phase 1, Fundamental Steps (i) through (iv)

are performed in iterations (1) and (2) and the

expressions of the elements of the inverse, Gl:1

and 61:2 are obtained.
Based on the results in (a), general expressions

l:n

for the elements of the inverse G , which is ob-

tained after the nth iteration, are developed and

proved by mathematical induction.

Using the results of (b), expressions are written
for Gl:F, the inverse obtained after all iteratioms
in phase 1.

By comparing the elements of G and Gl:F, the ex-

pressions for the elements of (}2:F are developed.
Based on the expressions for the elements of GlzF
and GZ:F, general expressions for the elements of

Gk:F, the inverse obtained after k phases, are

developed. These are proved by mathematical induc-

tion.
k:F
Based on the expressions for the elements of G ,

the expressions for the elements of the final in-

(K-1):F

verse G are developed.




These steps are explained in the following subsections. It
is helpful to recall now the relations gy y = 1/cj P if 1 = §,
’ ?
and 8y j =0 1f 1 < J from (2.32). These relations are used in
s

many simplifications in the following subsections.

2.4.4.2 Inverses After Iterations (1) and (2) of Phase 1

In phase 1, the inverse G of the matrix C is modified, tak-
ing into comsideration the unity elements above the main diagonal
in columns of column set 2. There are r'(K-1) iteratioms in this
phase corresponding to the r'(XK-1) number of columns of column
set 2.

Iteration (1):

In this iteration G is modified because of the unity element
above the main diagonal in the first column of column set 2 which
is the column 2¢(2,1) of (I—P)l. The unity element in this column

is located at position 2r(K-1,1). So, with reference to the

Fundamental Steps, q is the column 2¢c(2,1) of (I-P)1 and s = %2c(2,1). -

Fundamental Step (i):

y=6Gg

G is a left triangular matrix with its elements 8y j =0
’

if 1 - 3 from (2.32). The elements of g, which is column £(2,1)

- Py SO




of (I-P)l, are given by

1, if i = R(21)
q; = y,21° if i>11
0, Otherwise

where 21 = 2¢(2,1) and R(21) = 2r(K-1,1). The ith element of y

is obtained from

vy = .Zlgi,jqj , for i=1,2,...,m.
J—_-

Substituting the values of 9 from (2.36) and using the relation

g j = 0 1f i < j, the values of y; are given by
4
i
= + I
Yi T 81, Rr(21) j=llgi,jcj,21 J
for 1 = 1,2,...,m,
Fundamental Step (ii):
= (o1 2 Ypi-1 1 _Yan _m
A7 ’ 3 ey ’ ’ 9 veey
Y21 Y1 i1 Y Y91 Y91

From (2.37) and recalling that 84,4 " 1l/c

3,3

(2.36)

(2.37)

for all j from (2.32),




Yer = l81,r¢e1) * 1

§ The 1P element of x is now given by

( 1 1f 1 = 21 ’
(851 r(e1) * 1!
X, = (2.38)
] i i §
_ " Bren *E B0, 0]
i [ + 1] , Otherwise .,
{ 81,R(21)

At this stage it is helpful to introduce additional nota-

tions to simplify the task of representing different quantities.

Equation set (2.38) can be rewritten as

x; = -b(2,21,1) , for i=1,2,...,m , (2.39) '
where
_ Ir1(2,21,1) + £(2,21,1))
b(2,21,1) v (2,20 , (2.40)
!
| where
1
’ 8i,r(z1)’ if 1<4i<4gl
»
or
r1(2,21,1) = 2l <1 <m (2.41)

0, if 1= g1




f -1, 1f 1 =21
£(2,21,1) = J ’ (2.42)
i
L g, ,cC s Otherwise
j-zl i’j j’ll
and
(2.43)

v(2,21) = gzl,R(El) +1 .,

In the notations just introduced the first index within
the brackets signifies the fact that column 21, being considered

in this iteration, is a member of column set 2.

Fundamental Step (iii):

E is obtained by replacing the ﬁlth column of I with x. The

elements of E are now given by

(

-b(2,21,1), 1if j = L1 and
i=1,2,...,m

-

i,]
1, 4if j=1,2,...,m, but # 21, (2.44)

and i = j

o, Otherwise

where b(2,21,1) is given by (2.40).

63

T T ST AP Y My L L .
Ragiadiadind 2o o N OO s TR, ¢ - - .




Fundamental Step (iv):

G1:1 =E .G

where, as per the notation introduced, Glz1 is the inverse of

01:1 which has the same elements as C and an additional unity

element in column 2¢(2,1) and row fr(K-1,1). The elements of

Glz1 are obtained from

Substituting the values of e o from (2.44), the values of gi:;
’ } ]

are now given by, for j = 1,2,...,m,

(

—gkl,jb(Z,El,i) , 1f i =11

gi,j - gfol jb(zgzl,i) > Otherwise -
b 4

Equation set (2.45) can be rewritten as, for j = 1,2,...,m,

[ -gzl,jd(Z,zl,ll,i) y 1f 1 =21
1:1

g~ =
i,3
d(2,21,21,i) , Otherwise

8i,5 7 Ba1,3

(2.45)

(2.46)




| where

d(2,21,21,1i) = b(2,21,i) , for i = 1,2,...,m (2.47)

d(2,%21,%1,i) stands for the coefficient of gtl,j in the
expression for the element located at the ith row and the jth
column of the inverse matrix,Aobtained after including the
unity element above the main diagonal of the column 21 of
(I—P)l, which is also a member of the column set 2. Here £1 =
Le(2,1).

It may be observed here that in the calculation of the ele-

ments of Gl'l, the structure of the previous inverse G was used

to the extent that 8y j =0 if 1 < j.
k]

Iteration (2):

In this iteration Gl:1 is modified considering the unity

element above the main diagonal in column 2¢(2,2) of (I-P)1

sadabari

which 18 column 2 in column set 2. So here g is the column 22

of (1-P)1, s = 12, and R(£2) = 2r(k-1,2), vhere 22 stands for ’

2¢(2,2).

] Fundamental Step (i):
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The elements of q are given by

1, 1f 1 = R(22)

q = ¢y gp» 1f 1212 (2.48)

0 , Otherwise

m
1:1

y, = Lg q
i =1 1,3 73

» 1 =1,2,...,m
Substituting the expressions for gi:§ and qj, and simplifying
»
using 22 > 41 and noting that 851 f = 0 1if j > R1, Yy is given
]
by

- 81, r(a3(2>21,02,21) , 4f 1 =21

Yy = ’ . (2.49)
81 r(r2) ~ 221,281,181 peogy * jizzgi,jcj,lz ’

Otherwise -

Fundamental Step (1i):

The elements of x are given by

[ SV
22
.
Yy
- —— , Otherwise .
Yo2
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Substituting the values of Yy from (2.49) and using the notation

in iteration (1),

x = -b(2,22,i) , for 1i=1,2,...,m . (2.50)

The index 2 signifies the fact that column set 2 is under

[
i
i

F consideration.
f In (2.50)
o [rl(2,22,1) + £(2,22,1)]
b(2,22,1) v (2,12 s (2.51)
where
8y r(p2)” 4(2:21,21,1)80; pegoy, !
if 1 =1,2,...,m but ¥ 2, 22
1(2,422 = -d(2,21,21,1 if 1 =21 2.52
rl( »22,1) ﬁ d( s s XL, )821,1{(22) ’ ( )
0 , 1if 1 =22 1
E \
1
‘ -1, 4f 1 =32
b
£(2,22,1) = (2.53)

i

L g, ,c N
PP ¥ s X

Otherwise
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| V(2,82) = Byp pepyy ~ A2ALALEDE,) poay 1 - (2.54) /]

Fundamental Step (iii):

E is obtained by replacing column 22 of I with x. The ele-

ments of E are given by

[ -b(2,22,i) , if j = 22 and 1 = 1,2,...,m
i e 4 = 4 1, if j = 1,2,...,m, but # 22, (2.55)
* and i = j
0, Otherwise

where b(2,22,1) is defined in (2.51).

Fundamental Step (iv): .

G1:2 = F - G1:1

Here Glz2 is the inverse of Cl:z, which is similar to Cl‘l.

but also having a unity element in column 22 = 2¢(2,2) and row
R(22) = 2r(K-1,2).

The elements of 61:2 are given by




;; , for i,j =1,2,...,m.

Substituting the values of e 4 and gi:;, given by (2.55) and
L] 1]

(2.46) respectively, and simplifying, for all j,
8y 4" gzl’j{d(2,21,21,i) - b(2,22,1) d(2,21,21,22)}

b(2,22,1)}, 1f 1 <i <m
but ¢ 21, 22

T 8923

- j{d(z,u,zl,u) - b(2,22,21) d(2,%1,91,42)}

gi’j = < (2.56)
]
-gzz’j{b(Z,R.Z,ll)}, 1f 1 = 21
{ - 8y 4 (P(2,22,42)}, f 1 = 22 — :
where 11 = 2¢(2,1) and 22 = %2¢(2,2). Equation set (2.56) can be
rewritten as, for j = 1,2,...,m,
2c(2,2)
-z gy 5 4(2,2,02,1) , 1f 1 = 2(2,1), 2(2,2)
2=2c(2,1) ’
1:2
= 2. 7
8.3 =9 (2.57)
2ec(2,2)
g - L g d(2,2,22,1), Otherwise
| B page(a,) b ’
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where
-b(2,22,22) d(2,21,21,22) , if i= 22
4(2,21,22,1i) = J (2.58)
d(2,21,21,1) - b(2,22,i) d(2,21,21,22), Otherwise
and

d(2,22,22,1) = b(2,82,1i), if 1 =1,2,...,mn. (2.59)

Here, 21 < 2.

2.4.4.3 Inverse After the Final Iteration of Phase 1

' By examining the expressions for the elements of the inverse
and the different quantities obtained after Iterations 1 and 2,
it is possible to develop expressions for these quantities after
the final iteration r'(K-1) in phase 1. Mathematical induction

will be utilized for this purpose with the following conjecture.

Conjecture 2.1: The elements of the inverse Gl:n, obtained after

the nth iteration (n < r'(K-1)) in phase 1, are given by, for

j=1,2,...,m,




d(2,2,8n,1) = 4

B

where

b(2,

where

(0 ,if ¢ > and i=1,2,...,m

b(2,tn,i) , if 2 = &n and i =1,2,...,m

-b(2, &n, fn) d(2, %, in-1, %) , if £ < fn and 1 =

. 1
¢n,i) = TONTH] [r1(2,%n,1i) + £(2,2n,1)] ,

- 2c(2,n)
- -z I d(2,%2,%n,1) , if 2c(2,1) < i < 2c(2,n)

j 2=2c(2,1)

!

‘ 1in _
I 81,3 (2.60)

1 2c(2,n)

g . — z g d(2,2,4%n,1i) , Otherwise
13 pege(z,1) %03
where

(2.61)
in

L d(2,%,-1,i) - b(2,#n,1) d(2,%,4n-1, fn), Otherwise

(2.62)

e,




f in-1

gi:R(Qn) - _Z SZ,R(ln)d(z’R"g'“‘l’i),
=21
iflii(ﬂ or m<i§_m
r1(2, 40, 1) 'J fn-1 (2.63)
T gz’R(ln)d(2,l,2n-l,i) , if 21 f. i < ¢n
=21

r

-1, if 1i = an
4 £(2,%n,1) = J (2.64)
{ i

I g, .C » Otherwise
jopn 133,00
and
‘ in-1 ;
v(2,2n) = 84n,R(20) " { = 8¢ R(Ln) d(2,2,tn~-1,20)} + 1 + (2.65)

=21

In these expressions, fn = Lc(2,n). j
Now it will be shown that the expressions given in Conjecture !
2.1 are true for the (n+1)St iteration if they are true for the

nth iteration.

Iteration (n+l):

In iteration (n+l), the unity element located at row

Lr(K-1,n+1l) of column fc(2,n+l) of (I-P)1 is considered. So,




here ¢ is column f¢(2,nt+l) of (I-P)l.

Fundamental Step (i):

1, if 1 = R(2n+l)

0 , Otherwise .

Using (2.66) and (2.60), the elements of y are obtained as

'y

in )
) gl’R(2n+l)d(2,292n’i), if <1 <4n -
=21
. (2.67)
Y4
fn . i i
3 Otherwise »

Fundamental Step (ii):

L ef e Seaiams mans

The elements of x are obtained from




( 1
, 1if i = 4n+l
y2n+1
-
-y,
, Otherwise .
Yon+l

Substituting the values of i from (2.67) and using the quanti-

ties introduced earlier, the elements of x are given by

xi = -b(2,4n+1,1), ]
where
. 1 '
b(2,tn+l,1i) V(Z-,ln_"'l-) [r1(2,n+1,1i) + £(2,2n4+1,1)] , (2.68)
where
( Ln
gi,R(jz,n+1)_£=§181,R(2n+1)d(2,Q,R.n,i) ’ i
{
if 1 <41i<281 q{
or ntl <i<m |
in %
r1(2’94n+1’1) = -Qailgg’R(zn_'_l)d(z’pfykn,i) ) if Eli i < An+l (2'69)
0, 1if i = in+l

N\




-1, 1if 1 = ontl

£(2,8n+1,1) =< ‘ - (2.70)
i
I g, .c Otherwise
| =g 33
and
in
v(2,nt+l) = g2n+1,R(1n+l)_{2=ilgl,R(£n+1)d(2’2’ln'£n+1)}+1 . (2.71)

Fundamental Step (iii):

E is formed such that

( -b(2,%0+1,1i) , if j = 4n+l and i =1,2,...,m

e =¢1, if j=1,2,...,mbut # ¢n+l and 1 =] (2.72)

L 0 , Otherwise,

where b(2,en+1,1i) is given in (2.68).

Fundamental Step (iv):

Gl:n+1 = - G1:n

75




1l:n

Substituting the values of g and e from (2.60) and
i,) i,3
(2.72), respectively, and rearranging the terms, the elements
of Gl:n+l are given by, for j = 1,2,...,m,
2¢(2,n+l)
[ - I gy 4d(2,4,00#1,1) , 4f Re(2,1) <1 < Re(2,nH)
. 2=£c(2,1) ?
,‘r
4 l:int+l =
gi,j (2.73)
Lc(2,n+l)
84 j - hX 8, jd(2,2,£n+1.i), Otherwise
[ ) ez,
3
1 where
1
( 0, 1if 2 > ¢n¥l and 1= 1,2,...,m
b(2,8n+1,1) , 4if 2 = gn+l and 1 =1,2,...,m
4(2,2,8n+1,1) = J A (2.74)

-b(2,8n+1,8n+1) d(2,%,4n,2n+1) , 1f £ < Lnt+l

and 1 = &n+l

| d(2,2,%n,i) - b(2,2n+1,1)d(2,2,2n,2n+1) , Otherwise.

Comparing equation sets (2.68) through (2.74) with the correspond-
ing sets given in Conjecture 2.1, it is clear that the conjecture
holds for the elements of the inverse after (n+l)St iteration,

if it is true for nth iteration. From the results obtained after
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iterations 1 and 2, it is obvious that the conjecture is true
if n = 1,2. Hence, by induction it is true for n = 1,2,...,F
where F = r'(K-1).

Now using Conjecture 2.1, the expressions for the elements
of the inverse GI:F, obtained after all the iterations of phase
1, are developed. At this stage it is useful to introduce an-

other quanitty dl(k,%,1i) which is given by
dl(k,2,1i) = d(k,%,8F,1) (2.75)
The elements of GlzF can be written as, for all j = 1,2,...,m,

Le(2,F)
- I gy dL200) , 4 2e(2,1) <1 < 2e(2,F)
t=2c(2,1)

= ¢ (2.76)

2e(2,F)

. 8 - D> 8
L3 pmpee,n *d

d41(2,2,1i) , Otherwise

where d1(2,%,1) is given by (2.75) and can be recursively found

using equation sets (2.61) through (2.65).

e N




2.4.4.4 Inverse After All Iterations of Phase 2

In this phase, GI:F, the inverse obtained in phase 1, is
modified to take into account the unity elements above the main
diagonal in the columns of column set 3. There are r'(K-2) num-
ber of iterations in this phase, one each for each column. In
each iteration all the four Fundamental Steps are carried out.
Instead of going through all iteratioms, it is possible to de-

rive the expressions for the elements of GZ:F

, the final inverse
at the end of phase 2, by noting the following points.
(1) The same type of operations are performed in each
iteration of phase 2 as in the case of phase 1.
(i1) In deriving the expressions of the inverse in
each iteration of phase 1, the structure of the
inverse matrix obtained before is utilized to the
extent that gi,j =04if 1 < §.
(111) The structure of the column ¢ is utilized in
each iteration. The pattern of the elements in
columns of column set 3 is similar to that of
column set 2. Only the position of the unity
element and the first non-zero element after
unity is different in each column, which is re-

flected in the expressions of the inverse ele-

ments.

Now based on these points and equation set (2.76), the ele-
1:F

ments of GZ:F can be written in terms of the elements of G

e et s b i




as, for 1 = 1,2,...,m,
2e(3,F) .o
[ - b gz'j d1(3,2,1), if 2c(3,1) < 1 < #c(3,F)

f=2c(3,1) *

:F

Si j =% (2.77)
? l:F R.C(3,F) l’F
8] - z gg'j d1(3,%,1) , Otherwise

’ g=2¢(3,1) ?

\

where d1(3,%,1) = 4(3,%,2F,1).
1:F 1:F
After substituting the values of gy j and g, j for
1 9
2c(3,1) < & < 2c{3,F) from (2.76) and rearranging the terms,

equation sat (2.77) becomes, for all j,

2tc(2,F) 2¢c(3,F)
8y 4 = L 8, j{dl(Z,z,i) - L d1(3,2',1)d1(2,2,2")}
3 pmpe(2, ) Y 2'=pc(3,1)

26(39F) ;
- I g AL, 2F 1ot < ge(21)
2=2c(3,1) or 1c(3,F) <1i <m

2c(2,F) ' 2C(B’F)
- % gz j{dl(z,k,i) - z d1(3,2',1)d1(2,5,2")} :
g=gc(2,1) ™ 2'=2¢c(3,1)

2¢(3,F)
- b
2=2c(3,1)

;§ - 9 (2.78)

g2’3d1(3,z,1),1f 2e(2,1) < 1 <2c(2,F)

2c(2,F) 2e(3,F)
-~ b d1{3,2',1)d1(2,2,2') } !
2'=2c(3,1) )

z g
g=2c(2,1) 3

h 2e(3,F)
| - 2 gﬂ

3 d1(3,2,1) .4f 2¢(3,1) < { < 2c(3,F),
| g=gc(3,1) °’




'

In a similar way, the expressions for d(3,%,%&n,1), b(3,%n,1)

and other related quantities can be obtained on the basis of

equation sets (2.61) through (2.65). In these expressions in

stands for %c(3,n). The expressions are
( 0, if £ > &n and 1i=1,2,...,m

b(3,%n,i), if 2=t and 1 =1,2,...,m

d(3,2,2n,1) = ﬁ (2.79)

T

-b(3,4%n,2%n) d(3,2,4n-1,8n), 1if £ < &n

and 1 = n

d4(3,%,%n-1,i) - b(3,%n,1)d(3,2,4n-1,%n) ,
Otherwise

where ,

b(3,2n,1) = ;;(5%557 [r1(3,tn,1i) + £(3,%,1)] , (2.80)

pame et e

where

(N it RE
1,R(en) ~ L. B2,R(em)

if 1 <1 < 2c(3,1) or <1 <m

d(3,2,an-1,1i),

n-1
1:F
rl(3,4n,1) = ¢ - I g d(3,2,2n-1,1), (2.81)
g=21 2,R(2n)

if 2¢(3,1) <1 < &n

0, if 1 =2n




]

e gt ST
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1 -1, if 1 = ¢n
£(3,4n,1) = i ' (2.82)
\ jgzngiig cj,ﬂn » Otherwise
and
v(3,%n) = gi::R(m) - {gi giig(zn)do,l,zn—l,zn)}+1. (2.83)

Substituting the value of gl:F in (2.81) through (2.83), the ex-

pressions become

¢ 2c(2,F)
g - z g {d1(2,2,1i) -
1i,R(2n) e=c(2,1) L,R(2n) ’
n-1
z d(3,2',4n-1,1)d1(2,2,2")} -
£'=4¢c(3,1)
Ln-1
b g d(3,2,¢n-1,1), 1f 1 < 1 < 2c(2,1)
2=2c¢(3,1) 2,R(2n) ’ or ¢n<1i<m
2c(2,F)
rl(3,4n,1i) = ﬁ - 2=£c§2’1)gz’R(zn){d1(2,2,i) - (2.84)
in-1
Z d(3,2',£n-1,i) dl(2,l,£')} -
£'=2ec(3,1)
n~1
I g d(3,2,n~1,1), 1if 2e(2,1) < 1 < 2c(3,1)
p=ge(3,1) LoR(R)

(Equation (2.84) continued on next page.)




2c(2,F) in-1
- I g {~ 1z d(3,2',2n0~-1,1)d1(2,2,2")} -
pepc(2,1) RO o, 03,1
Zn-1
; b g d(3,2,¢n-1,1), 1if 2¢(3,1) < i < &n
: g=gc(3,1) vRG)
0, if i = n

( -1, if 1 =2gn

£f(3,n,1) = { (2.85)
3 i

b I g
} j=in

i,jcj,ln , Otherwise

and 5
2c(2,F)

= gln’R(zn) - £=2cz(:2’1)g2,,g(g,n) {dl(z)lgln) - f

v(3,%n)

in-1
) d(3,2',4n-1,2n)d1(2,2,2") } -~ (2.86)
2'=2¢(3,1)

-1
z
L=2c¢(3,1)

8 r(anyd(3:2,20-1,0m) + 1 .

2.4.4.5 Inverse After The Final Phase (K-1)

Instead of going through all the operations in all the

phases, the expressions for the final inverse elements are ob-

LA
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tained now using mathematical induction. First, a conjecture is

made as to the expressions for the inverse elements after k

phases and then it is shown to hold after (k+l) phases. In phase

k, the columns of column set (k+l) are taken into consideration.

Conjecture 2.2:

After phase k, (k = 1,2,..., K-2), the elements of the in-

verse Gk:F are given by, for j = 1,2,...,m,

81,3

where

(

h(k+1,k3,2,1) = ¢

( k+1
T {
kl=2 f=fc(k+3-kl,1)

D(k3,2,1i) - I I D(k',2",1)T(k3,k"'L,2") ),

0

kl=2 2=fc(k+3-kl,1)

b

e (k+3~k1,F)

b h(k+1,k+3-k1,2,1)},

.3

if 2(2,1) <i < fe(k+l,F)

k+l  2c(k+3-k1,F)

z{ b h(k+1,k+3-k1,%,1)},

82,3

Otherwise

k+1 Le(k',F)
k'=k3+1 g2'=gc(k’,1)

if k3 < k+l

Otherwise .

e

(2.87)

(2.88)
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The quantity h(k+l,k3,%2,1) stands for the coefficient of
gz’j,(zc(k3,1) < & < %e(k3,F)) in the expression of the element
at row i of the inverse obtained after taking into consideration
the unity elements above the main diagonal in the columns of
column sets 2 through (k+1).

In (2.88), for k' < ktl,

(dl(k',z',i), 1f 1< ge(k',F)
or i > fc(k+l,F)

D(k"l'si) =

(2.89)
0 , Otherwise
and
k-1 2¢c(kéb,F)
T(k3,k',2,2') = d1(k3,2,¢') ~ I { b) dl(k4,22,2")
k4=k3+1 22=fc(ké4,1)
(2.90)

, T(k3,k4,%,22)}.

As geen earlier,

dl(k',2',1) = d(k',2',2'F,1) .

The expressions of the other related quantities are given in

the following equations. In these equations, k1l can take any
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of the values 1,2,...,k+l and 2n = g¢c(kl,n):
r (1) (0, if ¢ > tnand 1i=1,2,...,n

b(kl,2n,i) , 1f f2 = tnand i = 1,2,...,m

d(k1,%,2n,1) = ﬁ (2.91)
-b(kl,2%n,2n)d(kl,2,4n~-1,2%n) if £ < 2n

and i = &n

| d(kl,2,%n-1,1)-b(kl,n,1)d(kl,%,2n~1,2n),

Othervise
where
1
(1i) b(kl,n,1) = m [r1(kl,2n,1i) + f£(kl1,8n,1)] , (2.92)
4 where
3 ( kKl fc(kl+2-11,F) !
(11i) g - L { z 4 h'(kl,kl+2-il,2,,i)}- ;
LRON) 40 pepe(k1t2-11,1) PRGN 4
in-1 ]
L 4 d(kl,l,ln-l,i), E
g=gc(k1,1) LoR(LR) '

if 1 § 1 <12c(2,1) orgn<ic<m

J k1  fe(kl+2-il1,F) 1
rl(kl,&n,1i) = - I L 8, R(m)h'(1<1,1<1+2-11.1L.:L)}-, :
i1=3 g=gc(kl+2-11,1) *’

fn~-1

L g d(kl, ¢, an-1,1) ,
pmpc(k1,1) LR ’

if 2c(2,1) < i < 2n

[ 0, 4f i= g
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where
(iv) h'(kl,k6,2,1) = D(k6,2,1) -
kl"‘l lC(k',F)
z { % D(k',2',1) T(k6,k',2,8")}-
k'=k6+l £'=gic(k’,1)
in-1
z d(k1,2',%n-1,1) T(k6,k1,2,%'),
2'=2¢(kl, 1)
where T(k3,k',2,2') is given by equation (2.90) and D(k6,2,1)
is given by
V) (dl(k&,z,i) ,» 1f 1 < ke(kb6,F)
or L > n
D(K6,2,1) = ¢ (2.95)
0 , Otherwise
(vi) (-1, 1if 1= 4n

f(kl,en,1) = J

(2.96)

i

L c Othervise
jelngi’j j,ln ’

~

(2.94)

S ¥ e e, Y




(viii) v(kl,fn) = Byn R(n) "

kl Lc(k1+2-11,F)
T { S
11=3 =g (kl1+2-11,1)

' L3 -
gl,R(zn)h (kl,k1+2-11,%,%n)}

(2.97)

n-1

I g d(k1,%,4n-1,%n) + 1.
pmpe(kl,1) vRUD) ’

Now the expressions of the elements of the inverse after
phase (k+1) are derived assuming that the expressions given in

Conjecture 2,2 are true for phase k.

Phase k+l:

In phase (k+l), the columns of column set (k+2) are con-
sidered. Instead of going through all iterations of phase (k+l),
the method used to obtain the expressions in phase 2 given the
expressions in phase 1, can be utilized. The three arguments
given in phase 2 are general in nature which can be applied to

any phase.

Now, based on equation set (2.76), the elements of Gk+1:F,

the inverse after phase (k+l), can be written in terms of the

elements of Gk:F as, for all j,




2c(k+2,F)
- I
2=2c(k+2,1)

gti? d1(k+2,2,1), 1f 2c(k+2,1) < 1 < fc(k+2,F)

k+1:F

.y 7 (2.98)
. e (k+2,F) .
\ glic’-l; - z g:.lj‘ dl(k+2’£’i) ’ otheWise
? 2=2c(k+2,1) *

where dl1(k+2,2,1) = d(k+2,8,8F,1).

Now the value of g?i? can be substituted in the preceding
equations and the resulting relations can be simplified. Because
of the lengthy procedure involved in the simplification process,

the details of simplification for the expressions in (2.98) when {

1 <1< 2e(2,1) and 2¢(2,1) < i < Re(k+1l,F) are given in Appendix

C. Details of simplifications for other ranges are not given as
the procedure is similar to the one given. Upon simplification

and’ rearranging the terms, equation set (2.98) becomes

( k+2  fc(k+4-k1,F)
- I by g, jh(k+2,k+4-kl.1.i)}.
| kl=2 f=fc(k+4-k1,1) **
if 2c(2,1) <1 < 2e(k+2,F)
: k+1:F _ J (2.99)
A gisj '
‘
k+2  fe(k+4-kl1,F)
8,4 " z{ £ g jh(k+2,k+4-kl,2,i)},
’ kl=2 g=gc(k+4-k1,1) **
\ Otherwvise
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where

h(k+2,k3,2,1) = ¢

where

D(k3,2,1) = ¢

and

k+2
D(k3,2,1) - . ¢ |
k "=k3+1

0 , Otherwise

dl(k3,2,i) , 1f 1

or 1

0 , Otherwise

T(k3,k',2,2") = d1(k3,2,L') -

when k' = k+2.

k'-1  2c(k4,P)
z { z
ké4=k3+1 28=%c(k4,l)

te(k',F)
b3 D(k',2',1)T(k3,k',2,2")}
L'=gc(k',1)
if k3 < k+2
(2.100)
i 2C(k3’F)
> fe(k+2,F)
(2.101)
)
/
1
1
(2.102)

dl(ké,22,2") T(k3,k4,2,22)}, 1




The expressions for D(k3,2,1) for k3 < k+l1 and T(k3,k',2,2')
for k' < k+l hold as per (2.89) and (2.90), respectively, in
Conjecture 2.2.

The expressions for the other related quantities can be ob-
tained in a similar way. First, the expressions for the different
quantities are written in terms of gif? based on the method given
in phase 2 and equations (2.79) through (2.83). In these expres-

sions, &n stands for fLc(k+2,n).
(1) (0, if 2 >n and 1i=1,2,...,m

b(k+2,2n,1) , if 2= fn and i =1,2,...,m
d(k+2,%,4n,1) = J (2.103)

-b(k+2, fn, tn)d(k+2, ¢, n-1,2n), if 2 < fn
and 1 = &n

d(k+2,2,2n~1,1)~b(k+2,%n,1)d(k+2,%,2n-1,%n),
Otherwise

where

(1) b(kt2,00,1) = oo ey (L2, 0n,0) + £(k#2,80,1)] | (2.104)

where




( fn-1
k:F k:F
1
if 1 <1 < fe(k+2,1)
or fn <1 <m
E 4n-1 K:F
| r1(k+2,2n,1) =< - I g5 d(k+2,2,40-1,1), (2.105)
g e=21 2,R(Ln)
{
t if 2c(k+2,1) <1 < &n
|
1 0, if 1 = 2n
‘ (1v) (-1, if 1= gn
f(k+2,2n,1) = ¢ (2.106)
i
k:F
L jizngi’j cj,zn ,» Otherwise A
and
in-1
k:F k:F
(v) v(k+2,2n) Bon,R(2n) {z-il gl’R(zn)d(l&Z,l,ﬂ,n-l,zn)}+1 .
(2.107)
] The expressions for g::g given in (2.87) can be substituted

in the expressions (2.105) through (2.107) and simplified. The

same procedure is followed in the derivation of the elements i

k+l:F
81,1

expressions become

and so the details are omitted here. Upon reduction, the




( k+2  fc(k+4-11,F)
1 - I > '(k42,k+4-11, 2,1) }
n-1
- I g d(k+2,2, 9n-1,1),
fmte(k+2,1) RO

if 1 <1 <2c(2,1) or 2n<i<m

k+2  Le(k+b-11,F)
rl(k+2,8n,1) =¢ - I { b 8y R(zn)h'(k+2,k+4—il,2,i) (2.108)
i1=3 2=fc(k+4-11,1)

fn~-1
- z
L=Lc(k+2,1)

gE’R(Qn)d(k+2,l,ln~1,i),

if 2(2,1) <1 < fn

o, if i=2%n,

where
k+1 te(k',F)
h'(k+2,k6,2,1) = D(k6,%,1) - T { b D(k*,2',1)T(k6,k"',2,2")
k'=k6+1 L'=2c(k',1)
fc(k+2,F)
- X d(k+2,2',2n~1,1)T(k6,k+2,2,2"), (2.109)
L'=2c(k+2,1)

where d(k+2,2',4n-1,1) is given by (2.103). Expressions for
D(k6,4,1) are given by (2.101) when k6 = k+2 and by (2.89) when
k6 < k+l. Expressions for T(k6,k',”,%') are given by (2.102)

when k' = k+2 and by (2.90) when k' < k+l.




(1iv) -1, 1if 1i = gn
f(k+2,2n,1) = ¢ . (2.110)
i
L . , Oth i
j=1ngi’jc3’kn ervise

and

(v) v(k+2,2n) = gln,R(En) -

k+2  Lc(k+4-11,F)
T { z
11=3 2=fc(k+4-11,1)

8y r(ipy D' (42.kH-1l,2,00)} - (2.110)

in-1
z
2=2c(k+2,1)

gE,R(ln)d(k+2’2’ln_1’Zn) +1.

Comparison of the expressions obtained after phase (k+l)
with the corresponding oﬂes in Conjecture 2.2 reveals that the
expressions given in the Conjecture hold for k = k+l. An exami-
nation of the expressions obtained after phases 1 and 2 makes it
clear that the expressions given in Conjecture 2.2 hold fof
k = 1,2. By mathematical induction, then, Conjecture 2.2 holds

for k = 1,2,...,(K-1), where (K-1) is the total number of phases.

It is now possible to write the expressions of the elements

of final inverse G(K—l):F, which is obtained after modifying the
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original inverse G of the lower triangular part of (I-P)l, taking

into consideration all the unity elements above the main diagonal

of (I—P)l. The elements of GK_I:F are given by, for j = 1,2,...,m,
( K Lc(K+2-11,F)
- I { z 8, Jh(x,x+2—11,z,1)},
11=2 g=gc(K+2-i1,1) ™°
if 2¢(2,1) <i<m
(K-1):F _ J
gi,j = (2.112)
K Lo (K+2-11,F)
81,5 " z{ I g, jh(K,K+2-il,£,i)},
: 11=2 g=fc(K+2-11,1) °
Otherwise
where, for k1l = 2,3,...,K,
K e(k',F)
(1) h(k,k1,2,1i) = D(kl,2,1i) - X { z D(k',2',1)T(k1,k",2,2")}
k'=kl+l 2'=2c(k’,1)
(2.113)
dl(k1,2,1) , 1if 1 < 2c(kl,F)
(i1) D(kl,%,1i) = (2.114)
0 , Otherwise

(14i1i) di(kl,e,i) = d(kl,2,2F,1) (2.115)

The values of all other related quantities are given as

per expressions (2.90) through (2.97) in Conjecture 2.2 for
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kl = 2,3,...,K.

2.5 CALCULATION OF STEADY STATE PROBABILITIES

In this section the elements of the steady state departure
probability vector A are calculated using the equations (2.20) and
(2.18) and the expressions of the elements of the inverse of (I-—-P)1
obtained in the previous section. Rewriting equation (2.20) as

_ . (K~1):F
(Al’AZ""’Am) = Am+l(21,42,...,zm)c R
each element of the row vector on the left hand side can be

expressed as

(K-1):F

i gi,j }, for j=1,2,...,m. (2.116)

m
A, = A {zz
3 o+l i=1

(K-1):F
i,j

arranging the terms, equation (2.116) can be written as

After substituting the values of g from (2.112) and re-

1 2
Aj = Am+l(sj - Sj) , for j = 1,2,...,m, A (2.117)
where
1 2c(2,1)-1
Sj = 151 Zigi,j s for 3 =1,2,...,m (2.118)
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and

2 K fc(K+2-i1,F) o
sj = I by g, {: Zih(K,K+2—il,2,i)}]
i1=2 f=gc(k+2-11,1) 3 i=1
for j = 1,2,...,m.
The expressions of S; and S§ are now modified to reduce

them as functions of the quantities corresponding only to the
rows 2c(2,1) to m of (I—P)l. The number of rows from %c(2,1)
to m is less compared to the remaining rows in most cases, and
this modification reduces the computer storage and the amount

of computation time in such cases.

2.5.1 Calculation of S;

It is necessary at this stage to consider a lower triangu-

lar matrix L of size (mtl)x(m+l) whose elements are given by

( ¢, ., for i=1,2,...,m and j = 1,2,...,m
i,j]
-Zj, for i =mtl and j = 1,2,...,m
Y070
1, for 1 =ml and j = mtl
\ 0, Otherwise

(2.119)

(2.120)
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where the ¢y j's are the elements of the lower triangular part
3

of (I-P)l and the -Z,'s are the last m elements of the (m+l)Bt

3
row of (I-P).

Because of the nature of the relationship between L and

(I-P)l matrices, the values of 84 's related to (I-P)1 and L

»3
are the same for the corresponding values of 1,j = 1,2,...,m.
Therefore, using (2.33), the following relation can be estab-
lished with respect to the elements of L:

m

r
i=1

for j=1,2,...,m (2.121)

8ut1,i = " % Pm1,181,3

Substituting the value of £ i from (2.120) into (2.121),

w1,
m
gm+1’j = 1ilzigi’j , for 3 =1,2,...,m |
fe(2,1)-1 m ’
= L Z,g + z 2,8
121 Thd o yopeqe,y T
m
1
=85, + z Z,.g
i=2¢(2,1) 171,
Therefore
1 m
5, =8 - z Z.g s
b 1, j {=0c(2,1) i™1,]
(2.122)

for j=12,...,m,
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In (2.122) the values of Bot1 j and 8y 4 can be obtained
’ 14

using the recursive relations given in (2.32).

2.5.2 Calculation of §§

Equation (2.119) can be written as

2 K 2c(K+2-11,F)
S, = I z 8

H(R+2-11,2))
3 412 t=pe(ke2-11,1) **3

for j = 1,2,...,m,

where

m
H(K+2-11,2) = 2 Zih(K,K+2—il,2,i) .
i=1
If (K+2-11) is written as k1l for the sake of simplicity, then
(2.124) becomes
m
H(kl,2) = £ Zih(K,kl,l,i).
i=1
Substituting the value of h(K,kl,2,1) from (2.113), H(kl,2) is

given by

(2.123)

(2.124)




m
H(k1,2) = £ Z,[D(k1,2,1) -
i=1
K te(k',F)
L { T D(k',2',1) T(kl,k',2,2%)}]

k'=kl+l 2'=2c(k’',1)

(2.125)
m
= I zin(kl,z,i) -
i=1
K Le(k,F) m
I L T(k1,k',2,2)[ ¢ ziD(k',z',i)]}.
k'=kl+l 2'=2¢c(k',1) i=1
In (2.125)
m Le(kl,F) m
z ZiD(kl,l,i) = L ZiD(kl,l,i) + T ZiD(kl,z,i)
i=1 i=1 i=2c(kl,F)+1
2c(kl,F)
= I Z,dl(kl,2,1),
i=1

because of (2.114). Similarly,

m lc(k',F)
X ZiD(k',l',i) = z Zidl(k',l',i) .
i=1 i=]

Now it is necessary to introduce a new quantity Y(kl,%,%&n)

which is defined as




n
Y(kl,2,%n) = I Zid(kl,l,ln,i) . (2.126)
i=1
Then, because dl(k',2',i) = d(k',2',2'F,1) as per (2.115), equation
(2.125) can be rewritten as
K 2e(k',F)

H(kl,2) = Y(k1,2,2F) - r | z T(k1l,k',2,2")
k'=k1l+l 2'=2c(k',1)

(2.127)

Y(k',2',2'F)},

where T(kl,k',%2,%') is given by (2.90), &F = 2¢c(k1,F) and &'F =
Le(k',F).

In (2.127) the only unknown quantities are the newly intro-
duced Y(.,.,.)'s, which were defined in (2.126). Substituting
the values of d(kl,2,2n,1i) from (2.91) into (2.126) and simplify-

ing, the values of Y(kl,2%,%n) can be expressed as

(0, if 2> an

n
Y(k1l,%2,8n) = ¢ z Zib(kl,ln,i) , 1if £ = fn (2.128)
i=1

Y(kl,2,2n~-1) - d(kl,%,in~-1,2n)Y(kl,%n,4n),

otherwise.

At - s
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The expression set (2.128) forms a set of recursive relatioms.

For any value of kl, &n can be varied from %1 to LF. For each
value of &n, % can be varied starting from &n and ending up with
21. When £ = 2n, the value of Ykkl,zn,zn) is obtained and then
the values of Y(kl,%,2n) for 21 < £ < in are determined recur-
sively using (2.128). So the next step now is to calculate
Y(kl,%n,2n).

Using the value of b(kl,%n,i) from (2.92) in (2.128),

Y(kl,&n,%n) is given by

1

v(kL,in) (el k1,20) + t2(e1,2m)] (2.129)

Y(kl,en,%n) =

where

Ln
t1(k1,om) = 3 z,r1(kl,in,1) (2.130)
i=1

and

in
t2(1,00) = T 2, £(k1,0n,1) . (2.131)
i=1
Now the expressions (2.130) and (2.131) are to be modified so
that tl(kl,nn) and tz(kl,ln) can be expressed as functions of
the quantities related to the rows from 2c(2,1) to m only.

First tl(kl,ln) is considered. Substituting the value of

r(kl,2n,i) from (2.93) and rearranging the summations, (2.130)




can be rewritten as

1 te(2,1)-1
t (kl,n) = L Z.g -
=1 151 ,R(fn)
¢ (k1,n-1) tn-1
b g { £z,d(kl,2,n-1,i)} - (2.132)
pmsc(k1,1) BRUR
kl 2c(kl+2-11,F) 2n-1
| T 8, R(‘m){ z zih'(kl.k1+2-il,l,i)}].
»

il=3 f=fc(kl+2-il,1) i-1

It can be seen from (2,.132) that tl(kl,ln) can be expressed as a
function of the quantities related to the rows from 2c(2,1) to

m only, if the expressions

2¢(2,1)-1 in-1
(a) iil Zigi,R(Qn) , (b) 121 Zid(kl,l,ln—l,i) , and

in-1
(c) L Zih'(kl,kl+2—11,2,i) of (2.132) are modified accordingly.
i=1

2c¢(2,1)-1
(1) The expression z Z
i=1

the expression (2.118) of §

igi,R(ln) is similar to

1
]

based on the final expression (2.122) of S

with § = R(2n). So,
1

j)
2¢(2,1)-1 m

L H4BLRG0) T Sl R(m) T

(2.133)

z 2.8
1= 2(2,1) i®i,R( ) .
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(ii) As per (2.132)

in-1
b Zid(kl,l,kn-l,i) = Y(kl, %, tn-1) .

i=1

(iii) Using the values of h'(kl,kl+2-11,2,1) from (2.94)

and rearranging the summations,

(2.134)

2n-1 2n-1
I 2z.h'(.1,k1+2-i1,2,i) = I Z,D(kl+2-il,%,1i)
. i i
i=1 i=1
2n-1 2n-1
- ) T(kl+2-11,k1,2,2M{ ¢ z.d(kl,2',2n-1,1)} (2.135)
2'=pc(kl,1) i=1 *
k1l-1 Le(k',F)
- b [ z T(kl+2-i1,k',2,2"){ £ ziD(k‘,z',i)}],

k'=kl+2-il+1 2'=2c(k',1)

Because of (2.95)

2n-1 fc (k1+2-11,F)

p I z,D(k1+2-11,2,1) = b z,d(k1+2-11, £, IF, 1),

i=1 i=1

where &F = f2¢c(kl+2-1i1,F).

As per (2.126),

gc(kl+2-11,F)
T 2,d(K1+2-11, 8, #F,i) = Y(k1+2-il, 2, IF)
1=1




P 2n-1

L 2,D(k1+2-il,%,1) = Y(k1+2-il,4,2F).
o i=1
!
Similarly
: )
! Ln-1
: I ZD(k',2",1) = Y(k',2',0'F) ,

i=1

where 'F = 2c(k',F),
Now, based on the modifications in (i), (ii), and (iii),

(2.132) can be rewritten as

m
1
t (kl,&n) = g - L Z.g.
m+1,R(2n) i=20(2,1) i®i,R(2n)
1
fc(kl,n-1)

z g Y(kl,%2,%n-1)
g=pe(kl,1) roROM)

e

kl  f£c(kl+2-i1,F)
- z
i1=3 f=fc(kl+2-i1,1)

{Y(k1+2-1i1,%,8F) (2.136) -

8¢,R(%n)

fn-1 .
- z T(k142-11,k1,%,2')Y(k1,%", en-1) ;
2'=2c(kl,1) :
3
k1-1 2e(k',F)
] - £ ( L T(k1+2-11,k',2,2")Y(k',2',2'F))}] . ;

k'=k1+2-i1+1 2'=fc(k',1)

Second, the expression for tz(kl,Rn) in (2.131) is modified. i

Substituting the values of f(kl,¢n,i) from (2.96) and simplifying,




equation (2.131) can be written as
£2(k1,2n) < -2 (2.137)
’ in

Now using (2.136) and (2.137), (2.129) can be written as

m
R S -
Y(kL,An,80) = SAT ) B, R(in) 1=£i(2 l)zigi,R(zn)
2c(kl,n-1)
-z - g Y(k1,%,2n-1) ‘
o gegeqr,y  LoRGW

k1l  fc(kl+2-il,F)
- % 1 3
11=3 f=fc(kl+2-il,1)

By r(en) (Y(KI¥2-11,2,0F)  (2.138)

Le(kl,n-1) /
- T T(k1+2-i1,k1,2,2')Y(k1,%2',2n-1) ‘
2'=2c(kl, 1) .
k1-1 2e(k’,F)
- T ( £ T(k1+2-i1,k',2,8")Y(k",2',2'F)) }1},

k'=kl+2-i1+1 2'=%c(k’',1)

where ¢F = 2c(k1+2-i1,F), &'F = ge(k',F), and the values éf
v(kl,fn) and T(.,.,.,.) can be obtained from (2.97) and (2.90),
respectively.

Now using (2.138) and the recursive relation set (2.128),

the values of Y(.,.,.) can be obtained. These, along with




T(.y.5.5.)"'s from (2.90), give the values of H(.,.) in (2.127).
Then (2.123) can be used to obtain Si.

2.5.3 Final Expressions for the Steady State Departure Probabilities

The valves of S1 and S2 can be calculated using the expres-

] h|
sions obtained in subsections 2.5.1 and 2.5.2 and then these
can be substituted in (2.117) to obtain the value of the steady

state departure probability, A,, (j = 1,2,...,m), in terms of

J
Am+1' Then the normalizing condition (2.18) can be used to ob-
tain the value of Aj, j=1,2,...,m1.
Alternately, instead of computing S; and S§ separately and

using these values in (2.117), the expressions of S§ and S§ in

(2.122) and (2.123), respectively, can be substituted in (2.117).

Then the combined expression can be used for the computation of

Aj' In this way, Aj can be written as
K fc(K+2-11,F)
Aj = Amllgml’j - I { I gz’j(Zz + H(k+2-11,2))}]. (2.139)

i1=2 2=fe(K+2~11,1)
Using the normalizing condition,

mtl
LA =1
j=1

given in (2.18), the value of Am+ can be obtained from

1




=1+ z W]t (2.140)

A

where
K fc(K+2-11,F)
W, =g .- L { z g8, ((Z, + H(RK+2-11,2)) },
3 "mL 1m0 gege(ki2-11,1) 3R
(2.141)
for i =1,2,...,m.
In (2.141), H(K+2-11,%) 1is calculated from (2.127), (2.128), and
(2.138). The values of Aj are now given by, for j = 1,2,...,m,
Aj = Am+1W5 . (2.142)
lg 2.6 SUMMARY OF THE ALGORITHMS

The solution development of the algorithms was explained in
sections 2.2 through 2.5. The expressions of the required quanti-
ties were also derived. 1In this section the solution procedure
of the algorithms is summarized in a sequence necessary to com-
pute the mean values of the system performance measures.

The sequence of the algorithms for implementation is given
in Figure (2.5). Now each algorithm in this sequence is described
in steps, organized in a manner suitable for adaption as a computer

code in the following subsections.

107




INPUT

SYSTEM PARAMETERS Ni’xi' Hyo (i =1,2,...,K),

!

ALGORITHM FOR

GENERATING STATES OF (I-P)l.(SECTION 2.4.2)

Y

ALGORITHM FOR GENERATING

THE ELEMENTS OF P AND (I—P)l. (SECTION 2.3).

!

ALGORITHM FOR INVERTING (I-P)L AND
CALCULATING STATIONARY PROBABILITIES.
(SECTIONS 2.4.3, 2.4.4, AND 2.5)

!

ALGORITHM FOR OBTAINING

(Bi)'s and pi's,(i «1,2,...,K). (SECTION 2.2).

!

CALCULATION OF SYSTEM PERFORMANCE MEASURES

qu. Ly W Lqi, o, (1=1,2,...,K). (SECTION 2.2)

SEQUENCE OF THE ALGORITHMS

FIGURE 2.5
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2.6.1 Algorithm for Generating the States of (I—P)1

The details of the procedure of this algorithm which were
discussed in section 2.4.2 are néw combined and explained in
the following steps.

A. Row States: (Numbered from the top)

Step 1: (Initialization). Set 1 = 1, kl = 1, {1 = 1,
21 = K, and 22 = K-1. Set the ordered row
sets 1 through K empty. Set the first row
state equal to Ki = (Nl,NZ,...,NK_l,NK-l).
Set j2 = N2 for £ = 1,2,...,K~1 and jK = NK-l.
Add the row state gi as the first member of
the ordered row set 1. Set il = 11 + 1 and
i=1+1.

Step 2: If jll # 0, set jll = jll-l and go to Step 4.
Otherwise go to Step 3.

Step 3: Set jll = Nll and 21 = 21-1. Go to Step 2.

Step 4: Set the ith row state,
£t = (4,09 1)
“n 129227

If either 22 = 0 or the Rth element of

2
i
gn = le, go to Step 5. Otherwise go to
Step 6.
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Step 5: Add row state 5; as the ilth member of the
K

ordered row set kl. If i = { Hl(Nk+l)}-l,
go to Step 7. Otherwise set ?1 = 1141,
i = i+l, and 21 = K. Go to Step 2.

Step 6: Set kl = kl+l and il = 1. Add row state Zi
as the ilth member of the ordered row set kl.
Set 22 = 22-1, il = {141, i = i+1, and 21 = K.
Go to Step 2.

Step 7: Stop.

B. Column States: (Numbered from left)

Step 1: (Initialization). Set v =2, kl =1, and vl = 1.
Set ordered column sets 1 through K empty.
Step 2: Set the vth member of row set (K-kl+1l) equal to
the vlth member of the ordered cclumn set kl.
If v is equal to the number of rows in
row set (K-kl+1), then go to Step 3. Other-
wise, go to Step 4.
Step 3: If k1l = K, go to Step 5. Otherwise set v = 1,
kl = kl+1, and vl = 1. Go to Step 2.
Step 4: Set v = v+l, and vl = vl+l. Go to Step 2.
Step 5: Stop.
After these steps, there are (m+1l) number of row states and
m number of column states, where m is given by { § (N2+l)—2}’

=1
The m column states and the first m row states form the states
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of (I-P)1 matrix. The (m+1)st row state, i.e., §:+1 = (0,0,...,0),

is required for calculating the elements of the row vector Z and

of the matrix L defined in (2.120).

2,6.2 Algorithm for the Calculation of Steady State Probabilities

As the expressions for the elements of the inverse of (I-P)1
were used to obtain explicit expressions for the steady state de-
parture probabilities, the algorithms for inversion of (I-P)1 and
for the calculation of the steady state probabilities can be com-
bined together for the purpose of implementation. The recursive
expressions for calculating the inverse elements do not require
all the elements of the transition probability matrix P at one
time. The gi’j's are calculated as and when the elements of P
are generated. Therefore, for the sake of implementation, the
algorithm for generating the elements of P can also be combined
with the algorithms for inversion of (I-P)1 and for the calcula-
tion of steady state departure probabilities.

Step 1: Consider the matrix L, whose elements are given

by (2.120).

Decrease j by 1 from mtl until it is equal
to 1. For each value of j increase 1 by 1 from
j to mtl. For each value of the pair (1,])
calculate the values of the elements pi’j's, cor-
responding to the row and column states, using

the formulae given in section 2.3, and 21 J's
?
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Step 2:

Step 3:

Step 4:

using (2.120). Using the recursive relations (2.32), cal-
culate gi,j's one by one recursively, with zi,j = ci,j'
Store the values of
(69) 84 j's for 2¢(2,1) <i <mtl and 1 < J < wtl
’

(i1) 2 's for i =1,2,...,mand j = 1

i,]
] ]
(1ii) gi,j s as ci,j s for 2c¢(2,1) < 1, < m, and
(iv) 2, ,'sas -Z2,'s for i =mtl and 1 < j < m.
i,] b -7 -
Set k1l = 2.

Increase £n by 1 from 2c(kl,1) to 2¢(k1l,F). For
each value of &n, (i) increase 1 by 1 from 2n to
m, and (ii) increase & by 1 from %c¢(kl,1; to &n.
For each value of the pair (&n,i) calculate
b(kl,%n,1) using equations (2.92) through (2.97).
For each value of (%,%n,1i) calculate d(kl,%,%n,1i)
using (2.91).
Store the values of
(1)  d(k1,%,%n,1i) for 2n < i < fc(kl,F),
2c(kl,1) < n < 2¢(kl,F) and 2c(kl,1) < & < %n,
and
(ii) d1(xl1,2,i) which are d(kl1l,%,%2F,1i), (2F=2c(kl1,F)),
for f¢(kl,1) < i < m, and Rec(kl,l) < & < f2c(kl,F).
If k1 = 2, go to Step 5. Otherwise go to Step 4.
Increase k' in increments of 1 from 2 to kl-1. For
each value of k', increase £ by 1 from 2c(kl,1) to
2c(kl,F) and 2' by 1 from fe(k',1) to fc(k',F). For

each value of (k',2',2) calculate T(k',kl,%',2) using
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(2.90). Store all values of T(k',kl,2',%).
Step 5: Increase &n by 1 from 2c(kl,1l) to 2c(kl,F). For
each value of Zn,’calculate Y(kl,lh,zn) using (2.138).
For each value of &n > fc(kl,l), decrease £ by 1 from
¢n-1 to fc(kl,1), and for each value of (%,&n), cal-
culate Y(kl,%2,2n) using (2.128).
Store the values of Y(kl1,2,2F) for %c(kl,1) <
2 < %e¢(kl,F) where &F = fc(kl,F).
{ Step 6: Set kl = kl+l. If kl < K, go to Step 3. Otherwise
go to Step 7.
Step 7: Increase k2 by 1 from 2 to K. For each value of k2,
increase & by 1 from fc(k2,1) to 2c(k2,F). For each
value of (k2,%), calculate H(k2,%2) using (2.127).
Store all values of H(k2,%).
’ Step 8: Increase j by 1 from 1 to m and for each value of j )
': calculate wj using (2.141). Store all values of Wj.
" Step 9: Calculate Am+1 using (2.140).

Step 10: Calculate the values of Aj’ j=1,2,...,m using (2.142).

; 2.6.3 Algorithm for Calculating E(Bi)'s and pi's

The values of the E(Bi)'s, i=1,2,...,K, are calculated using
(2.15). After obtaining the value of E(I) from (2.10), oi's,
i=1,2,...,K, are calculated using (2.9). These calculations are

summarized in this section.

- 2
= -—acina
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For computational convenience, equation (2.15) can be re-

written as

E(Bi) = 1/u[PROD(1) E(I) + Am_'_lSUM(i)] (2.143)
where
PROD(i) = Nixi (2.144)
K -1
E(I) = [ Z PROD(i)] (2.145)
i=1
as per (2.10) and (2.144), and
YN ok N
stM(i) = [ 2 ( £ {2 AMWD] (2.146)
vi=1 g=i+1 v2=0

such that vj = 0 for all j < i.

As noted in section 2.4.2.3, A corresponds to the state

wl
(0,0,...,0). Among the quantities required to calculate E(Bi)

in (2.143), SUM(1i) is the only one which involves the steady state
departure probabilities. SUM(i) can be defined as the probability
that, under steady state, the service time is that of a class 1
customer immediately after a departure. Because of the way in

which the row states are arranged in (I—P)l, SUM(1) 1s the sum of

the steady state departure probabilities corresponding to the
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K
first Nl{ il (N2+1)} -lrow states of (I-P)l, SUM(2) is the sum of
=2 K
those probabilities corresponding to the next NZ{ n (N2+1)} row
=3

states and so on with SUM(K} being the sum of the steady state
departure probabilities corresponding to the last NK row states
of (1-P)'.
Now the algorithm can be summarized in the following steps.
Step 1: Increase i by 1 from 1 to K and calculate PROD(i)'s
using (2.144) for each value of i. Calculate E(I)

using (2.145).

K
Step 2: Seti=1, j, =1, and j, = N.{ I (N,+1)}-1. Go
1 2 1 4=2 L
to Step 3. .
2P
Step 3: (Calculate SUM(i) = I A,. Set i = i+l and jl = j2+1.
=i,
If i <K, go to Step 4. If i > K, go to Step 5.
K
Step 4: Set j, =3, + N,{ T (N +1)}. Go to Step 3.
R

Step 5: For i = 1,2,...,K, obtain the values of E(Bi) using
(2.143) and then the values of CH using (2.9).

Step 6: Stop.

Using the values of the pi's obtained, the mean values of

the system performance measures, W_, Li’ wi, Lq , and p can be

i i
calculated using equations (2.3) through (2.6).




2.7 VERIFICATION AND COMPUTATIONAL ASPECTS OF THE ALGORITHMS

2.7.1 Verification

The algorithms developed in this research were verified using
simulation. The algorithms were coded in Fortran language and run
on IBM 370/155 system to obtain the required output measures. A
set of test cases were chosen with different values of the input
parameters, K, Ni’ By Xi, (i=1,2,...,K), and exponential service
times for the purpose of verification. The simulation was coded in
the GPSS/360 language and run on the IBM 370/155 system. Point
estimates and their 957 confidence intervals were obtained for
wq' using the method of batch means [SARG 79] with 5 batches. The
re:ults of both the algorithms and simulation for different test
cases are given in Table 2.1. It can be seen that the results
agree extremely well, thereby verifying Fhe algorithms. For the
purpose of gaining insight into the computational aspects of the
algorithms, some other test cases were also run and the results

are given in Table 2.2. These are discussed in the next subsec-

tion.

2.7.2 Computational Aspects

On the whole, the algorithms behave reasonably well and are
efficient. This is especially true with respect to those algo-

rithms which invert the (I-P)1 matrix and calculate the steady
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W
94
SIMULATION
CLASS N1 }‘i LMy MEAN 95% C.I. ALGORITHMS
i
l Pl 3 | 1.0 | 2.0 0.6544 0.6419 to 0.6669 0.6593
| t ! 1.5 ! 2.5 3.1695 3.0949 to  3.2441 3.1588
i '3 . 2 | 3.0 ! 4.0 |23.6628 | 21.2053 to 26.1203 23.7393
| | r 0.5 112.0 | 0.0742 | 0.0708 to 0.0777 0.075
% | 0.6 110.0 0.1167 0.1098 to 0.1236 0.1176 *
f3 5 | 0.7 }11.0 0.2226 0.2056 to 0.2396 0.2308 1
; 4
1 1 7 | 0.1]50 | 0.0882 0.0813 to  0.0951 0.0895 ?
| {7 | 0.4 {10.0 0.1297 0.1234 to  0.1360 0.1317 !
30 7 0.5 10,0 | 0.2490 0.2345 to 0.2635 0.2592 |
! !
15 02 | 2.0 | 1.5052 | 1.4198 to  1.5906 1.5091 |
15 | 0.06° 1.0 | 22.2951 | 20.4733 to 24.1169 22.4878 !
1} 05|50 | 0.1871 0.1707 to  0.2035 0.1976
2 . 0.6 | 7.2 ° 0.2371 0.2197 to  0.2545 0.2418 )
2 | 0.4 | 2.4 1 0.2737 0.2515 to 0.2959 |  0.279%
2 | 0.45 3.6 | 0.4693 0.4468 to 0.4918 E 0.4848
2 | 0.30] 6.0 i 0.7818 0.7431 to 0.8205 | 0.8134

RESULTS OF VERIFICATION

TABLE 2.1
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CLASS N A u W
(1) i i i qi
0.1 1.0 0.6625
0.2 0.5 0.2426
5 0.3 2.0 0.9102
3 0.2 1.0 2.4383
10 0.8 6.0 0.4840
10 1.0 10.0 7.0620
1 25 0.1 2.0 3.0332
2 25 0.06 1.0 309.7898
1 30 0.3 8.0 0.6044
1 0.1 15.0 4.1039
1 50 0.1 8.0 0.1734
1 0.08 15.0 0.4140
0.5 12.0 0.0750
0.6 10.0 0.1176
0.7 11.0 0.2308
‘ 1 ! 4 0.20 3.0 0.3031
0.30 2.5 0.5137
20 0.05 5.0 1.6556
l

RESULTS OF Wq USING THE ALGORITHMS
i

TABLE 2.2
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state departure probabilities. This is because these algorithms
were developed taking into consideration the special structure
of the matrix. To illustrate this, the number of additions and
subtractions and the number of multiplications and divisions
required by the algorithms, denoted as Al and A2 respectively,
and by the Gaussian elimination method [HADL 61}, denoted as Gl
and G2 respectively, to calculate the stationary departure prob~
abilities are compared in Table 2.3 for certain cases. It can
be seen that, in general, the humber of operations required by
the algorithms is less than that required by the Gaussian elimi-
nation method.

The number of operations required by the algorithms depends
on the number of classes, the number of states of (I—P)l, and
the number of unity elements above the main diagonal of (I-P)l.
The number of operations required by the algorithms increases
as the number of unity elements increases. Therefore, the re-
duction in the number of operations required by the algorithms
in comparison with the Géussian method is more in the cases where
the ratio of U, the number of unity elements above the main di-
agonal, to m, the total number of states in the matrix (I—P)l,
is low and less in the cases where this ratio is high. This is
illustrated in Figures 2.6 and 2.7 where the ratios of the num-
ber of additions and subtractions and the number of multiplica-
tions and divisions, respectively, required by the algorithms

to the corresponding numbers required by the Gaussian elimina-
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tion method, that is, Al/Gl and A2/G2, are plotted against the
ratio of U, the number of unity elements above the main diagonal
to m, the number of states of (I-P)l matrix for some different
values of m. The maximum possible value of the ratio U/m is
0.5. Even at this ratio, the reduction in the number of opera-
tions required by the algorithms, as compared to the Gaussian
elimination method, is significant. 1t is also observed that
for the same value of K, the number of classes, and the same
value of the ratio U/m, the reduction increases as m increases.
Also, in addition to this reduction in the number of operatioms,
the storage requirement of the algorithms is always less than
that required by the Gaussian elimination method, as the whole

(I-P)1 matrix need not be stored for the algorithms.

When the number of states becomes large, i.e., greater than
or equal to 250, some computational difficulties were experienced )

with respect to the generation of the elements of the tramsition

... . bR

probability matrix P, The main problem is due to the floating-

point arithmetic errors in computing the elements of P as per

the combinatorial equations obtained in Appendix A. This prob-
lem was minimized by using double precision arithmetic and log-
arithmic operations in the cases run. In the case of exponential
and hyper-exponential service time distributions, this problem
can be further reduced by replacing the summation of the largest

range with a single product term. It is based on the following
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combinatorial relation [KNUT 68],

u h
g (1 (2.147)
h=0(h (h+v) v(u+v}
u 1

Another problem is the amount of computational time required
to calculate the elements of the transition probability matrix, P,
Using a numerical method to evaluate the integrals necessary in
the calculation of these elements may reduce such problems. Fur-
ther work on this problem is desirable.

When the state space becomes large the storage requirement
also increases, especially for the algorithms which invert the
(I—P)l matrix and calculate the steady state departure probabili-
ties. This can be handled by using direct access auxiliary stor-
age devices such as discs or drums. Care should be taken, how-
ever, to modify the program such that the input/output time does

not increase significantly.
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CHAPTER 3

EXTENSIONS AND CONCLUSIONS

3.1 INTRODUCTION

In this chapter we first discuss the extension of the al-
gorithms for obtaining the marginal and joint time average prob-
abilities of finding a certain number of customers of different
classes at the facility. Then the possibility of using these
algorithms to cover mixed class models with infinite capacity
source for some classes and finite capacity sources for the other
classes is discussed. Finally conclusions and suggestioms for

future research are given.

3.2 MARGINAL AND JOINT TIME AVERAGE PROBABILITIES

. This extension is based on the appiication of Level Crossing
Analysis [SHAN 80] to a special case of discrete state processes
known as plecewise Markov processes [KUCZ 73]. The required
equations are derived and then modified to suit implementations

as algorithms in the following subsections.

3.2,1 Marginal Time Average Probabilities

The aim here is to obtain the values of qi(ni), for 1 = 1,2,

...,K, and n, = 0’1’2""’Ni’ which are the marginal time average
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probabilities of finding o, customers of class i at the facility.
In order to understand the basis of the approach used to find
these, it is necessary to consider the sample path of class i
customers which gives the number of class i customers at the

facility at any time. It is shown in Figure 3.1.

NUMBER OF
CLASS 1
CUSTOMERS

O --

TIME

SAMPLE PATH

FIGURE 3.1

An arrival of a class i customer at the service facility is
represented by an upward jump and a departure of a class i cus-~
tomer from the service facility after completion of service by
a downward jump. A level n, n, < Ni' is considered in the sample
path and the state space is divided into 2 mutually exclusive sets.

Set 1 consists of those states, less than or equal to ng, and

RO i & s
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set 2 consists of those states greater than or equal to (ni+1).
Then, as per the Level Crossing Analysis [SHAN 80], rd(ni),
which denotes the rate of downcrossings from set 2 into set 1,
is equal to ru(ni), the rate of upcrossings from set 1 into set

2. That is,
rd(ni) = tu(ni) (3.1)

As the arrival rate of class 1 customers when there are o,
number of customers of class i at the facility is equal to
(Ni-ni)Ai, and because there are only single arrivals, ru(ni) is

given by

r () = ¢ () n)h,
(3.2)

for i = 1,2,...,K and n, = 0,1,2,...,N1-1 .

i
Let Hi(ni) represent the steady state probability that a

departing i class customer leaves behind n, customers of class

i at the service facility, (1 = 1,2,...,K; n, = 0,1,2,...,Ni-1).

Then, as there are only single departures, rd(ni) is given by

i
r.(n)=0I(n,)p,u,, for i=1,2,...,K and
d i 177171 (3.3)

ni - 0,1.2,.-.,“1-1 »
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where o gives the output rate of class i customers. From (3.1)

1M1
to (3.3), the marginal time average probability of finding n,

customers of class i at the facility can be obtained as

i
qi(n ) = S~£2ilglii for 1 = 1,2 K and
0 - 'Y = ’ gecsey
i (Ni ni)Ai
(3.4)
n1 = 0,1,2,...,Ni—1.
qi(Ni) can be calculated from
N,-1
i 1 i
q (Ni) =1- I q (ni) . (3.5)
ni=0

In equation (3.4), Hi(ni) can be evaluated using certain
elements of the transition probability matrix P and the elements
of the steady state probability vector A. As per the notation
introduced earlier, the conditional probability that the (n.+l)sc
departure leaves behind Upsloseeesly number of the corresponding
class customers at the service facility, given that the nth de-
parture leaves behind jl,jz,...,jK number of the corresponding
class customers, is represented as P[g_{.n+1 = (ul,uz,...,ﬁk) | zn =
(jl,jz,...,jK)]. If the row vectors u and j represent (ul,uz,...,uK)
and (jl,jz,...,jK), respectively, then this conditional probability

can be written as P[X =y ] X = j]. These are the elements of
—ntl — ' =n

P. In a similar way the steady state probability that a departure
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leaves behind jl’JZ""’jK numbers of the corresponding classes

can be written as A(j). Then Hi(ni) is given by, for 1 = 2,3,

ee s K,
. My N Niap Ny
T(n) = I I, L z
u1=0 u2=0 u1—1=0 u1+1=0
Ne Ny Ny Ny
I [{: z B X P[}_{n+1=_q|§ﬂ-j_]A(J_)} (3.6)

ug=0 1y=1 34,40 Ig=0

+ (PIX_, =ulX =0]A(D)}],

where jz =0 4if £ < i and u =1 for n, = 0,1,2,...,N1-1.

i’ i

and for i = 1,

N, N, % NN Ny

Hl(nl) = I L. I I % .. x

u2=0 u3=0 uK=0 j1=1 j2=0 jK=0

PIX 4 =ulX =11AD) + (RIX . =ulX =0]A®}] .  (3.7)

where up =n, for n = 0,1,2,...,(N1-1).

In (3.6) and (3.7), O represents the row vector containing all

zero elements, i.e., (0,0,...,0).




3.2.1.1 Implementation of the Algorithm

The calculation of Hi(ni) as per equations (3.5) and (3.6)
- is the main task in the calculation of the marginal time average

probabilities, ql(ni). Certain elements of the transition prob-

ability matrix P and the elements of the steady state probability
vector are necessary for calculating Hi(ni). It may be recalled
from section 2.6 that only those elements of P necessary for the E
calculation of the steady state érobabilities are stored and that
3 the steady state probabilities are calculated after the generation
of the elements of P and inversion of (I—P)1 matrix, as per the
previous set of algorithms developed. Hence, in order to imple-

ment the algorithm to calculate ql(ni), it is necessary to store

those elements of P necessary to calculate Hi(ni).

In equations (3.6) and (3.7), the vectors u and j refer to
the corresponding column and row states, respectively. Upon
scrutiny of equation (3.6), it can be seen that the required
elements of P, which are the conditional probabilities P[§n+153

§n=ij correspond to the row states which has zero number of class

1 customers. Because of the way in which the row states are

] arranged as per the steps described in Section 2.4.2, these r;w
states correspond to the last 22(N2+1) rows of the transition
=
probability matrix P. Therefoie, it is necessary only to store
the elements of P corresponding to these last Zi&(N2+1) TOWS

‘ =

as they are generated in the earlier set of algorithms. Equa-




tion (3.7) requires the elements of P which correspond to the
row states having the number o class 1 customers greater than
zero. As the storage of these elements requires additional
space, equation (3.7) is to be modified and reduced in terms of
only the elements of the last § (N£+l) rows of P. To achieve

=2
this, first the equilibrium equation (2.17) is written as

N N N

1 2 K
Au) = ; :O . io"' ; iop[l‘n+1=2"—‘n=i]“i) s (3.8)
1 92 K
K K K
where Z u,, I j., < IN, and 0 <wu, <N, fori=1,2,...,K.
. s i . - i-"1
i=1 i=1 i=1

Equation (3.8) can be modified by rearranging the terms and

written as

Nl N2 NK
= =41 5t
L 5 Tl 0sa) +
i;=1 3, g
PIX ,,=ulX =0]AQ)} = {a(w) - (3.9)
N2 N3 NK
I L ... IPIX L =ulX =ilA(D]
J2=0 J3so JK=0
K K K
where I ji < I NK in vector j' and jl=0 and I ji#O in vector
i=1 i=1 i=1

j. Using (3.9), (3.7) can be rewritten as
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L N2 N3 NK N2 N3 NK
T@)= £ I «. I [A@=- I I ... I
u2=0 u3=0 uK=0 32=0 33=O jK==0
(3.10)
{PIx , =ulX =ila(D },
K
where u; =10 for n, = 0,1,2,...,N1—1 and iy = 0 and 1£1Ji #0

in j.

Now I'(n,) for i = 1,2,...,K and n; = 0,1,2,...,N;-1 can
be found by using (3.10) and (3.6) in terms of the elements of
the last Qﬁz(N2+1) rows of P. For the sake of computational
convenienc;, equation (3.10) can be rewritten after interchanging

summation signs as

N, N, N
1 1
M (n)) = S1(ny) - I Io... IADQ(ng50) (3.11)
] =O 3 =O J' =0
127 33 K
where
Kk N
Sl(n)) = I [ £ A(w] (3.12)
=2 u =0
2
and
1 kK N
Q(ny3) = I L PIX ,,=ulX =111 . (3.13)
=2 ul=0
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In (3.11) to (3.13), up = n, f;r n, = 0,1,2,...,(N1-1), and in
(3.11) and (3.13) §, =0 and I j, > O.
1 Q=2 L

In a similar way equation (3.6) can be rewritten as, for

1=2,3,...,K,

i Noo Nin Ng .
M(n) ={ & I .o T OA(DQ (a0}
3471 33470 370
(3.14)
+ (a0l ;01
where
. k W
Q ;D = [ IPIX  =ulX =]] (3.15)
=1 u1=0 ,
#1
and /I
{ K N z
Q (ni;Q) = L[ I P(§n+1?5l§nég)] , (3.16)
=1 u2=0
#i

¢ where 0 is the row vector containing all zero elements. In (3.14)
to (3.16), u =n = 0,1,2,...,Ni—1 and in (3.14) and (3.15),
Ji > 1 and jz = 0 for all 2 < i in j. The advantage in using
equations (3.11) to (3.16) for calculation of T (n)), 1 = 1,2,...,K,
is that the storage required is less as the required elements of

P are not stored individually but, rather, as sums in Qi(nf‘l).

133

i
i
5
“




Now the algorithm for calculating the values of qi(ni) can
be described in the following steps:

Step 1: Modify Step 1 of Part A of Section 2.6.2 as

follows: |
Calculate and store Qi(ni;j) for 1 = 1,2,...,K

using (3.13) and (3.15), and Qi(ni;g) for 1 = 2,3,...,K
using (3.16).

Step 2: After calculation of the elements of A, calculate
Sl(nl) for n

= 0,1,2,...,N,-1 using (3.12).

1 1

Step 3: Calculate the values of Hi(ni) for 1 = 1,2,...,K and
n, = 0,1,2,...,N1—1 using (3.11) and (3.14).
Step 4: Calculate qi(ni) for i = 1,2,...,K and n, = 0,1,2,

...,Ni using (3.4) and (3.5).

3.2.2 Joint Time Average Probabilities

If n refers to the row vector containing the elements
(nl’“Z”"’nK) then the joint time average probability of find-
ing BysMggeceshy number of customers of the corresponding classes
at the service facility can be represented by q(n). In this sec-
tion, expressions for obtaining the values of q(n) for i = 1,2,
= 0,1,2,...,N

...,K and n are derived.

i i
In this case the level corresponding to the state n = (nl,nz,
K K
...,nK), z ng # I N,, is considered and the state space is
i=] i=1

divided into two mutually exclusive sets. Set 1 consists of all
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states n' = (ni, né,...,nk), such that 0 < n} < n, for 1 = 1,2,
...,K, and Set 2 consists of all other states. Then, because
there are only single arrivals, the rate of upcrossings, ru(g),

from set 1 into set 2 is given by

(3.17)

K b5 ) Bi-1 Piwl ok
ru(g) = I )\i(ni){ L z . z T £ q(n")}
i= '= '= ' = ' = "=
i=1 nl 0 n, 0 n,_, 0 nig 0 ny 0
where n! = n, inn' ,
i i =

and Ai(ni) = (Ni-ni)Ai for i 1,2,...,K. Also, because there
are only single departures, the rate of downcrossings, rd(g), from

set 2 into set 1 is given by

K

r,(n) = 2 Hi(n.)uioi . (3.18)

iu, =11

In (3.18), Hi(ni) is the steady state probability that a departing

.. .

or equal to n2

PiMy gives the output rate of class i customers. Then using Level
Crossing Analysis [SHAN 80] as rd(g) = ru(g),

(3.19)

K s i M4 oy
) Ai(ni){ z ) N z I - Iq(n') }
. [ 1 v o v o LI
' i=1 n, 0 n, 0 n_y 0 ni+1 0 ny 0
K i
= I N.(n)u,p, .
i=1 117104

class i customer leaves behind n, customers of class i and less than

customers of class %, 2#i, at the service facility and




Rearranging the terms, equation (3.19) can be written as

K K
q(g).ilxini = iilnl(“i>“1°1 -
K S T i1 Pi41 e
IRWCI I Io... T £ ... Iq(n"))}.(3.20)
= [ [ LI v - 1—
=1 nl 0 n, 0 ni-l 0 ni+l 0 nK 0

K
In (3.20) the elements of the vector n are such that I n, #
K 3=1
jile. q(Nl’NZ""’NK) can be obtained from

NN Ng
q(Nl’NZ""’NK) =1-1{ £ z z q(nl,nz,...,nK)}.
nl=0 n2=0 nK=O
K K
jilni # Jile

Equation (3.20) gives a recursive relation for finding the

(3.21)

values of q(n) starting with n = (0,0,...,0), which is the (m+1)St

row state of (I-P) matrix, then considering the mth

until fipally the ISt row state given by n = (N1

is considered. The values of ni(ni) in (3.20) can be obtained
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in a similar way as described in Section 3.1.1. The algorithm
for finding the values of q(n) can be summarized in the following
steps:
Step 1: After finding and storing the values of Hi(ni)
for i =1,2,...,K and n, = 0,1,2,...,Ni—l, set
j = mtl.
Step 2: Set n equal to the jth row state of (I-P). Cal-
culate q(n) using (3.20).
Step 3: Set j = j-1. If j > 1, go to Step 2. Otherwise
go to Step 4.

Step 4: Stop.

3.3 MIXED CLASS MODELS

In this section the possibility of using the algorithms for
mixed class models with infinite capacity sources for some classes
and finite capacity sources for the othér classes is considered.
The number of the states of the transition probability matrix
becomes infinity if one or more of the sources are of infinite

capacity. This problem of infinite number of states can be e-

liminated by assuming maximum limits for the total number of
customers of infinite source classes at the service facility.
However, care should be taken in choosing these maximum limits
depending upon the model parameters so as to be realistic.

For the purpose of illustration, a mixed class model with

infinite capacity source for the highest priority class, i.e.,




class 1, and finite capacity sources for the other classes is
considered. The number of classes is equal to K. The capacity
of the source of class i, i = 2,3,...,K is assumed to be Ni'
which is finite. The mean time interval spent by a class i cus-

tomer, 1 = 1,2,...,K, at source i is exponentially distributed

with mean l/Ai. Because of infinite source, the probabilitv of
a certain number of arrivals of class 1 customers at the service
facility within a given time period is independent of the number
of class 1 customers already present at the facility. This is
not true with other classes for which this probability is de-
pendent on the number of the customers of the corresponding
classes already present at the facility. The service time of
class i customer, i = 1,2,...,K, has an arbitrary density func-
tion with mean llui. Class i customers are given preference over
class j customers for service if i < j. To restrict the number
of states of the transition probability matrix from being in-
finitv, it is assumed that the maximum number of class 1 cus-
tomers present at the service facility at any time is Ml. In
other words, there will be no arrivals of class 1 customers in-
to the service facility when there are Ml number of class i
customers already at the facility.

This model can be analyzed using an imbedded Markov chain.
The total number of the states of the transition probability

K

+1){ ¢ (N2+1)}—1. For example, if there
2=2

matrix is given by (Ml




are 3 classes with M1 = 20, N2 = 10, and N3 = 10, the total num-

ber of states is equal to 2540. The algorithms for ordering the
row and column states, inverting the corresponding (I—P)l matrix
and calculating the steady state departure probabilities